86 research outputs found
DROP: Dimensionality Reduction Optimization for Time Series
Dimensionality reduction is a critical step in scaling machine learning
pipelines. Principal component analysis (PCA) is a standard tool for
dimensionality reduction, but performing PCA over a full dataset can be
prohibitively expensive. As a result, theoretical work has studied the
effectiveness of iterative, stochastic PCA methods that operate over data
samples. However, termination conditions for stochastic PCA either execute for
a predetermined number of iterations, or until convergence of the solution,
frequently sampling too many or too few datapoints for end-to-end runtime
improvements. We show how accounting for downstream analytics operations during
DR via PCA allows stochastic methods to efficiently terminate after operating
over small (e.g., 1%) subsamples of input data, reducing whole workload
runtime. Leveraging this, we propose DROP, a DR optimizer that enables speedups
of up to 5x over Singular-Value-Decomposition-based PCA techniques, and exceeds
conventional approaches like FFT and PAA by up to 16x in end-to-end workloads
To Index or Not to Index: Optimizing Exact Maximum Inner Product Search
Exact Maximum Inner Product Search (MIPS) is an important task that is widely
pertinent to recommender systems and high-dimensional similarity search. The
brute-force approach to solving exact MIPS is computationally expensive, thus
spurring recent development of novel indexes and pruning techniques for this
task. In this paper, we show that a hardware-efficient brute-force approach,
blocked matrix multiply (BMM), can outperform the state-of-the-art MIPS solvers
by over an order of magnitude, for some -- but not all -- inputs.
In this paper, we also present a novel MIPS solution, MAXIMUS, that takes
advantage of hardware efficiency and pruning of the search space. Like BMM,
MAXIMUS is faster than other solvers by up to an order of magnitude, but again
only for some inputs. Since no single solution offers the best runtime
performance for all inputs, we introduce a new data-dependent optimizer,
OPTIMUS, that selects online with minimal overhead the best MIPS solver for a
given input. Together, OPTIMUS and MAXIMUS outperform state-of-the-art MIPS
solvers by 3.2 on average, and up to 10.9, on widely studied
MIPS datasets.Comment: 12 pages, 8 figures, 2 table
- …