160 research outputs found

    The Mg/Ca–temperature relationship in brachiopod shells: calibrating a potential palaeoseasonality proxy

    Get PDF
    Brachiopods are long-lived, long-ranging, extant organisms, of which some groups precipitate a relatively diagenetically stable low magnesium calcite shell. Previous work has suggested that the incorporation of Mg into brachiopod calcite may be controlled by temperature (Brand et al., 2013). Here we build upon this work by using laser ablation sampling to define the intra-shell variations in two modern brachiopod species,Terebratulina retusa (Linnaeus, 1758) and Liothyrella neozelanica (Thomson, 1918). We studied three T. retusa shells collected live from the Firth of Lorne, Scotland, which witnessed annual temperature variations on the order of 7 °C, in addition to four L. neozelanica shells, which were dredged from a water depth transect (168–1488 m) off the north coast of New Zealand. The comparison of intra-shell Mg/Ca profiles with shell δ<sup>18</sup>O confirms a temperature control on brachiopod Mg/Ca and supports the use of brachiopod Mg/Ca as a palaeoseasonality indicator. Our preliminary temperature calibrations are Mg/Ca = 1.76 ± 0.27 e<sup>(0.16 ± 0.03)T</sup>, R<sup>2</sup> = 0.75, for T. retusa and Mg/Ca = 0.49 ± 1.27 e<sup>(0.2 ± 0.11)T</sup>, R<sup>2</sup> = 0.32, for L. neozelanica (errors are 95% confidence intervals)

    Human Mesenchymal Stromal Cells Decrease Mortality Following Intestinal Ischemia and Reperfusion Injury

    Get PDF
    Background Cellular therapy is a novel treatment option for intestinal ischemia. Bone marrow–derived mesenchymal stromal cells (BMSCs) have previously been shown to abate the damage caused by intestinal ischemia/reperfusion (I/R) injury. We therefore hypothesized that (1) human BMSCs (hBMSCs) would produce more beneficial growth factors and lower levels of proinflammatory mediators compared to differentiated cells, (2) direct application of hBMSCs to ischemic intestine would decrease mortality after injury, and (3) decreased mortality would be associated with an altered intestinal and hepatic inflammatory response. Methods Adult hBMSCs and keratinocytes were cultured on polystyrene flasks. For in vitro experiments, cells were exposed to tumor necrosis factor, lipopolysaccharides, or 2% oxygen for 24 h. Supernatants were then analyzed for growth factors and chemokines by multiplex assay. For in vivo experiments, 8- to 12-wk-old male C57Bl6J mice were anesthetized and underwent a midline laparotomy. Experimental groups were exposed to temporary superior mesenteric artery occlusion for 60 min. Immediately after ischemia, 2 × 106 hBMSCs or keratinocytes in phosphate-buffered saline were placed into the peritoneal cavity. Animals were then closed and allowed to recover for 6 h (molecular/histologic analysis) or 7 d (survival analysis). After 6-h reperfusion, animals were euthanized. Intestines and livers were harvested and analyzed for inflammatory chemokines, growth factors, and histologic changes. Results hBMSCs expressed higher levels of human interleukin (IL) 6, IL-8, vascular endothelial growth factor (VEGF), and epidermal growth factor and lower levels of IL-1, IL-3, IL-7, and granulocyte-monocyte colony-stimulating factor after stimulation. In vivo, I/R resulted in significant mortality (70% mortality), whereas application of hBMSCs after ischemia decreased mortality to 10% in a dose-dependent fashion (P = 0.004). Keratinocyte therapy offered no improvements in mortality above I/R. Histologic profiles were equivalent between ischemic groups, regardless of the application of hBMSCs or keratinocytes. Cellular therapy yielded significantly decreased murine intestinal levels of soluble activin receptor-like kinase 1, betacellulin, and endothelin, whereas increasing levels of eotaxin, monokine induced by gamma interferon (MIG), monocyte chemoattractant protein 1, IL-6, granulocyte colony-stimulating factor (G-CSF), and interferon gamma-induced protein 10 (IP-10) from ischemia were appreciated. hBMSC therapy yielded significantly higher expression of murine intestinal VEGF and lower levels of intestinal MIG compared to keratinocyte therapy. Application of hBMSCs after ischemia yielded significantly lower murine levels of hepatic MIG, IP-10, and G-CSF compared to keratinocyte therapy. Conclusions Human BMSCs produce multiple beneficial growth factors. Direct application of hBMSCs to the peritoneal cavity after intestinal I/R decreased mortality by 60%. Improved outcomes with hBMSC therapy were not associated with improved histologic profiles in this model. hBMSC therapy was associated with higher VEGF in intestines and lower levels of proinflammtory MIG, IP-10, and G-CSF in liver tissue after ischemia, suggesting that reperfusion with hBMSC therapy may alter survival by modulating the systemic inflammatory response to ischemia

    Dengue outlook for the World Cup in Brazil: an early warning model framework driven by real-time seasonal climate forecasts.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tBACKGROUND: With more than a million spectators expected to travel among 12 different cities in Brazil during the football World Cup, June 12-July 13, 2014, the risk of the mosquito-transmitted disease dengue fever is a concern. We addressed the potential for a dengue epidemic during the tournament, using a probabilistic forecast of dengue risk for the 553 microregions of Brazil, with risk level warnings for the 12 cities where matches will be played. METHODS: We obtained real-time seasonal climate forecasts from several international sources (European Centre for Medium-Range Weather Forecasts [ECMWF], Met Office, Meteo-France and Centro de Previsão de Tempo e Estudos Climáticos [CPTEC]) and the observed dengue epidemiological situation in Brazil at the forecast issue date as provided by the Ministry of Health. Using this information we devised a spatiotemporal hierarchical Bayesian modelling framework that enabled dengue warnings to be made 3 months ahead. By assessing the past performance of the forecasting system using observed dengue incidence rates for June, 2000-2013, we identified optimum trigger alert thresholds for scenarios of medium-risk and high-risk of dengue. FINDINGS: Our forecasts for June, 2014, showed that dengue risk was likely to be low in the host cities Brasília, Cuiabá, Curitiba, Porto Alegre, and São Paulo. The risk was medium in Rio de Janeiro, Belo Horizonte, Salvador, and Manaus. High-risk alerts were triggered for the northeastern cities of Recife (p(high)=19%), Fortaleza (p(high)=46%), and Natal (p(high)=48%). For these high-risk areas, particularly Natal, the forecasting system did well for previous years (in June, 2000-13). INTERPRETATION: This timely dengue early warning permits the Ministry of Health and local authorities to implement appropriate, city-specific mitigation and control actions ahead of the World Cup. FUNDING: European Commission's Seventh Framework Research Programme projects DENFREE, EUPORIAS, and SPECS; Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro.DENFREE projectEUPORIAS projectSPECS projectEuropean Commission's Seventh Framework Research ProgrammeConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado do Rio de Janeir

    Engineering Temperature‐Dependent Carrier Concentration in Bulk Composite Materials via Temperature‐Dependent Fermi Level Offset

    Full text link
    Precise control of carrier concentration in both bulk and thin‐film materials is crucial for many solid‐state devices, including photovoltaic cells, superconductors, and high mobility transistors. For applications that span a wide temperature range (thermoelectric power generation being a prime example) the optimal carrier concentration varies as a function of temperature. This work presents a modified modulation doping method to engineer the temperature dependence of the carrier concentration by incorporating a nanosize secondary phase that controls the temperature‐dependent doping in the bulk matrix. This study demonstrates this technique by de‐doping the heavily defect‐doped degenerate semiconductor GeTe, thereby enhancing its average power factor by 100% at low temperatures, with no deterioration at high temperatures. This can be a general method to improve the average thermoelectric performance of many other materials.Temperature‐dependent modulation doping is demonstrated in a GeTe–CuInTe2 composite material. Temperature‐dependent carrier concentration is achieved by controlling the temperature‐dependent Fermi level offset between the GeTe matrix and CuInTe2 inclusions. An enhanced average power factor over a wide temperature range is demonstrated.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141881/1/aenm201701623.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141881/2/aenm201701623-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141881/3/aenm201701623_am.pd

    The SPS as accelerator of Pb82+^{82+} ions

    Get PDF
    In 1994 the CERN SPS was used for the first time to accelerate fully stripped ions of the Pb208 isotope from the equivalent proton momentum of 13 GeV/c to 400 GeV/c. In the CERN PS, which was used as injector, the lead was accelerated as Pb53+ ions and then fully stripped in the transfer line from PS to SPS. The radio frequency swing which is needed in order to keep the synchronism during acceleration is too big to have the SPS cavities deliver enough voltage for all frequencies. For that reason a new technique of fixed frequency acceleration was used. With this technique up to 70% of the injected beam could be captured and accelerated up to the extraction energy, the equivalent of 2.2 1010 charges. The beam was extracted over a 5 sec. long spill and was then delivered to different experiments at the same time

    High intensity proton beams in a multi-cycled SPS

    Get PDF
    The SPS ran for 247 days during 1994; 64% of this was with high intensity proton beam for physics data taking in the Fixed Target mode of operation, 12% was for a lead run at the end of the year, with the remaining 24% spent in setting up and machine development. The SPS supplied LEP with 8 bunches of electrons and 8 bunches of positrons either in the 14.4 or 19.2 seconds interleaved cycling mode during the operation with protons or lead ions respectively. The new record peak intensity during the year was 3.9x1013 protons per pulse at 450GeV. A total of 11x1018 proton were delivered to all targets, with an overall average during physics of 2.5x1013 protons per pulse at 450GeV. Some 6x1018 protons were delivered to both neutrino experiments

    Acceleration of High Intensity Proton Beams

    Get PDF
    In 1998 the CERN SPS accelerator finished a five years long program providing 450GeV proton beams for neutrino physics. These experiments required the highest possible beam intensity the SPS can deliver. During the last five years the maximum proton intensity in the SPS has steadily been increased to a maximum of 4.8 1013 protons per cycle. In order to achieve these intensities a careful monitoring and improvement of the vertical aperture was necessary. Improved feedback systems on the different RF cavities were needed in order to avoid instabilities. Also the quality (emittance and extraction spill) of the injector, the CERN PS, had be optimised

    The SPS as lead-ion accelerator

    Get PDF
    In 1995 the CERN SPS was used during two months to accelerate fully stripped ions of the Pb208 isotope from the equivalent proton momentum of 13 GeV/c to 400 GeV/c. The radio frequency swing which is needed in order to keep the synchronism during acceleration is too big to have the SPS cavities deliver enough voltage for all frequencies. In a first stage, the beam is accelerated from 13 GeV/c to 26 GeV/c using the fixed frequency mode. During this stage the beam is grouped in four 2msec batches, separated by 3msec holes during which the frequency is changed in order to keep synchronism. At 26 GeV the beams are de-bunched and recaptured in order to fill the 3msec holes. From there on the lead ions are then accelerated up to 400 GeV/c with the normal frequency program. The de-bunching and recapture at 26 GeV improved the effective spill at extraction by a factor of three. Intensities up to 3.9 1010 charges could be obtained at 400 GeV/c. The total efficiency of the two RF captures was 64%

    Testing the effect of carbonate saturation on the Sr/Ca of biogenic aragonite: A case study from the River Ehen, Cumbria, UK

    Get PDF
    It has been suggested that the incorporation of strontium into biogenic aragonite may be influenced by the degree of carbonate saturation in aquatic environments. We measured the Sr/Ca ratios of river water and the aragonitic shells of freshwater bivalves (Margaritifera margaritifera) from two sites with different carbonate saturation states in the River Ehen, Cumbria, UK. Shell Sr/Ca and river water Sr/Ca are 0.1 mmol/mol and 0.42 mmol/mol lower, respectively, at the high carbonate saturation site. However, the distribution coefficients of strontium into aragonite (KD) are the same (∼0.28) at both sites. These analyses show that Sr uptake into aragonite bivalve shells is not affected by the degree of carbonate saturation of the water, perhaps reflecting a strong biological control on trace element incorporation

    Ultrafast measurements of mode-specific deformation potentials of Bi2_2Te3_3 and Bi2_2Se3_3

    Full text link
    Quantifying electron-phonon interactions for the surface states of topological materials can provide key insights into surface-state transport, topological superconductivity, and potentially how to manipulate the surface state using a structural degree of freedom. We perform time-resolved x-ray diffraction (XRD) and angle-resolved photoemission (ARPES) measurements on Bi2_2Te3_3 and Bi2_2Se3_3, following the excitation of coherent A1g_{1g} optical phonons. We extract and compare the deformation potentials coupling the surface electronic states to local A1g_{1g}-like displacements in these two materials using the experimentally determined atomic displacements from XRD and electron band shifts from ARPES.We find the coupling in Bi2_2Te3_3 and Bi2_2Se3_3 to be similar and in general in agreement with expectations from density functional theory. We establish a methodology that quantifies the mode-specific electron-phonon coupling experimentally, allowing detailed comparison to theory. Our results shed light on fundamental processes in topological insulators involving electron-phonon coupling
    corecore