805 research outputs found
The megaprior heuristic for discovering protein sequence patterns
Several computer algorithms for discovering patterns in groups of protein sequences are in use that are based on fitting the parameters of a statistical model to a group of related sequences. These include hidden Markov model (HMM) algorithms for multiple sequence alignment, and the MEME and Gibbs sampler aagorithms for discovering motifs. These algorithms axe sometimes prone to producing models that are incorrect because two or more patterns have been tombitted. The statistical model produced in this situation is a convex combination (weighted average) two or more different models. This paper presents a solution to the problem of convex combinations in the form of a heuristic based on using extremely low variance Dirichlet mixture priors as past of the statistical model. This heuristic, which we call the megaprior heuristic, increases the strength (i.e., decreases the variance) of the prior in proportion to the size of the sequence dataset. This causes each column in the final model to strongly resemble the mean of a single component of the prior, regardless of the size of the dataset. We describe the cause of the convex combination problem, analyze it mathematically, motivate and describe the implementation of the megaprior heuristic, and show how it can effectively eliminate the problem of convex combinations in protein sequence pattern discovery
Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data
A major goal of molecular biology is determining the mechanisms that control the transcription of genes. Motif Enrichment Analysis (MEA) seeks to determine which DNA-binding transcription factors control the transcription of a set of genes by detecting enrichment of known binding motifs in the genes' regulatory regions. Typically, the biologist specifies a set of genes believed to be co-regulated and a library of known DNA-binding models for transcription factors, and MEA determines which (if any) of the factors may be direct regulators of the genes. Since the number of factors with known DNA-binding models is rapidly increasing as a result of high-throughput technologies, MEA is becoming increasingly useful. In this paper, we explore ways to make MEA applicable in more settings, and evaluate the efficacy of a number of MEA approaches.We first define a mathematical framework for Motif Enrichment Analysis that relaxes the requirement that the biologist input a selected set of genes. Instead, the input consists of all regulatory regions, each labeled with the level of a biological signal. We then define and implement a number of motif enrichment analysis methods. Some of these methods require a user-specified signal threshold, some identify an optimum threshold in a data-driven way and two of our methods are threshold-free. We evaluate these methods, along with two existing methods (Clover and PASTAA), using yeast ChIP-chip data. Our novel threshold-free method based on linear regression performs best in our evaluation, followed by the data-driven PASTAA algorithm. The Clover algorithm performs as well as PASTAA if the user-specified threshold is chosen optimally. Data-driven methods based on three statistical tests-Fisher Exact Test, rank-sum test, and multi-hypergeometric test--perform poorly, even when the threshold is chosen optimally. These methods (and Clover) perform even worse when unrestricted data-driven threshold determination is used.Our novel, threshold-free linear regression method works well on ChIP-chip data. Methods using data-driven threshold determination can perform poorly unless the range of thresholds is limited a priori. The limits implemented in PASTAA, however, appear to be well-chosen. Our novel algorithms--AME (Analysis of Motif Enrichment)-are available at http://bioinformatics.org.au/ame/
Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures
BACKGROUND: The structure of proteins may change as a result of the inherent flexibility of some protein regions. We develop and explore probabilistic machine learning methods for predicting a continuum secondary structure, i.e. assigning probabilities to the conformational states of a residue. We train our methods using data derived from high-quality NMR models. RESULTS: Several probabilistic models not only successfully estimate the continuum secondary structure, but also provide a categorical output on par with models directly trained on categorical data. Importantly, models trained on the continuum secondary structure are also better than their categorical counterparts at identifying the conformational state for structurally ambivalent residues. CONCLUSION: Cascaded probabilistic neural networks trained on the continuum secondary structure exhibit better accuracy in structurally ambivalent regions of proteins, while sustaining an overall classification accuracy on par with standard, categorical prediction methods
Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts
Our current understanding of how DNA is packed in the nucleus is most accurate at the fine scale of individual nucleosomes and at the large scale of chromosome territories. However, accurate modeling of DNA architecture at the intermediate scale of ∼50 kb-10 Mb is crucial for identifying functional interactions among regulatory elements and their target promoters. We describe a method, Fit-Hi-C, that assigns statistical confidence estimates to mid-range intra-chromosomal contacts by jointly modeling the random polymer looping effect and previously observed technical biases in Hi-C data sets. We demonstrate that our proposed approach computes accurate empirical null models of contact probability without any distribution assumption, corrects for binning artifacts, and provides improved statistical power relative to a previously described method. High-confidence contacts identified by Fit-Hi-C preferentially link expressed gene promoters to active enhancers identified by chromatin signatures in human embryonic stem cells (ESCs), capture 77% ofRNA polymerase II-mediated enhancer-promoter interactions identified using ChIA-PET in mouse ESCs, and confirm previously validated, cell line-specific interactions in mouse cortex cells. We observe that insulators and heterochromatin regions are hubs for high-confidence contacts, while promoters and strong enhancers are involved in fewer contacts. We also observe that binding peaks of master pluripotency factors such as NANOG and POU5F1 are highly enriched in high-confidence contacts for human ESCs. Furthermore, we show that pairs of loci linked by high-confidence contacts exhibit similar replication timing in human and mouse ESCs and preferentially lie within the boundaries of topological domains for human and mouse cell lines
MEME-ChIP: motif analysis of large DNA datasets
Motivation: Advances in high-throughput sequencing have resulted in rapid growth in large, high-quality datasets including those arising from transcription factor (TF) ChIP-seq experiments. While there are many existing tools for discovering TF binding site motifs in such datasets, most web-based tools cannot directly process such large datasets
FIMO: scanning for occurrences of a given motif
Summary: A motif is a short DNA or protein sequence that contributes to the biological function of the sequence in which it resides. Over the past several decades, many computational methods have been described for identifying, characterizing and searching with sequence motifs. Critical to nearly any motif-based sequence analysis pipeline is the ability to scan a sequence database for occurrences of a given motif described by a position-specific frequency matrix
Inferring transcription factor complexes from ChIP-seq data
Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) allows researchers to determine the genome-wide binding locations of individual transcription factors (TFs) at high resolution. This information can be interrogated to study various aspects of TF behaviour, including the mechanisms that control TF binding. Physical interaction between TFs comprises one important aspect of TF binding in eukaryotes, mediating tissue-specific gene expression. We have developed an algorithm, spaced motif analysis (SpaMo), which is able to infer physical interactions between the given TF and TFs bound at neighbouring sites at the DNA interface. The algorithm predicts TF interactions in half of the ChIP-seq data sets we test, with the majority of these predictions supported by direct evidence from the literature or evidence of homodimerization. High resolution motif spacing information obtained by this method can facilitate an improved understanding of individual TF complex structures. SpaMo can assist researchers in extracting maximum information relating to binding mechanisms from their TF ChIP-seq data. SpaMo is available for download and interactive use as part of the MEME Suite (http://meme.nbcr.net)
MEME: discovering and analyzing DNA and protein sequence motifs
MEME (Multiple EM for Motif Elicitation) is one of the most widely used tools for searching for novel ‘signals’ in sets of biological sequences. Applications include the discovery of new transcription factor binding sites and protein domains. MEME works by searching for repeated, ungapped sequence patterns that occur in the DNA or protein sequences provided by the user. Users can perform MEME searches via the web server hosted by the National Biomedical Computation Resource () and several mirror sites. Through the same web server, users can also access the Motif Alignment and Search Tool to search sequence databases for matches to motifs encoded in several popular formats. By clicking on buttons in the MEME output, users can compare the motifs discovered in their input sequences with databases of known motifs, search sequence databases for matches to the motifs and display the motifs in various formats. This article describes the freely accessible web server and its architecture, and discusses ways to use MEME effectively to find new sequence patterns in biological sequences and analyze their significance
Inferring direct DNA binding from ChIP-seq
Genome-wide binding data from transcription factor ChIP-seq experiments is the best source of information for inferring the relative DNA-binding affinity of these proteins in vivo . However, standard motif enrichment analysis and motif discovery approaches sometimes fail to correctly identify the binding motif for the ChIP-ed factor. To overcome this problem, we propose ‘central motif enrichment analysis’ (CMEA), which is based on the observation that the positional distribution of binding sites matching the direct-binding motif tends to be unimodal, well centered and maximal in the precise center of the ChIP-seq peak regions. We describe a novel visualization and statistical analysis tool—CentriMo—that identifies the region of maximum central enrichment in a set of ChIP-seq peak regions and displays the positional distributions of predicted sites. Using CentriMo for motif enrichment analysis, we provide evidence that one transcription factor (Nanog) has different binding affinity in vivo than in vitro , that another binds DNA cooperatively (E2f1), and confirm the in vivo affinity of NFIC, rescuing a difficult ChIP-seq data set. In another data set, CentriMo strongly suggests that there is no evidence of direct DNA binding by the ChIP-ed factor (Smad1). CentriMo is now part of the MEME Suite software package available at http://meme.nbcr.net . All data and output files presented here are available at: http://research.imb.uq.edu.au/t.bailey/sd/Bailey2011a
Quantifying similarity between motifs
A common question within the context of de novo motif discovery is whether a newly discovered, putative motif resembles any previously discovered motif in an existing database. To answer this question, we define a statistical measure of motif-motif similarity, and we describe an algorithm, called Tomtom, for searching a database of motifs with a given query motif. Experimental simulations demonstrate the accuracy of Tomtom's E values and its effectiveness in finding similar motifs
- …