174 research outputs found
Controls-structures-electromagnetics interaction program
A technology development program is described involving Controls Structures Electromagnetics Interaction (CSEI) for large space structures. The CSEI program was developed as part of the continuing effort following the successful kinematic deployment and RF tests of the 15 meter Hoop/Column antenna. One lesson learned was the importance of making reflector surface adjustment after fabrication and deployment. Given are program objectives, ground based test configuration, Intelsat adaptive feed, reflector shape prediction model, control experiment concepts, master schedule, and Control Of Flexible Structures-II (COFS-II) baseline configuration
The 15-meter antenna performance optimization using an interdisciplinary approach
A 15-meter diameter deployable antenna has been built and is being used as an experimental test system with which to develop interdisciplinary controls, structures, and electromagnetics technology for large space antennas. The program objective is to study interdisciplinary issues important in optimizing large space antenna performance for a variety of potential users. The 15-meter antenna utilizes a hoop column structural concept with a gold-plated molybdenum mesh reflector. One feature of the design is the use of adjustable control cables to improve the paraboloid reflector shape. Manual adjustment of the cords after initial deployment improved surface smoothness relative to the build accuracy from 0.140 in. RMS to 0.070 in. Preliminary structural dynamics tests and near-field electromagnetic tests were made. The antenna is now being modified for further testing. Modifications include addition of a precise motorized control cord adjustment system to make the reflector surface smoother and an adaptive feed for electronic compensation of reflector surface distortions. Although the previous test results show good agreement between calculated and measured values, additional work is needed to study modelling limits for each discipline, evaluate the potential of adaptive feed compensation, and study closed-loop control performance in a dynamic environment
Estimating individuals’ genetic and non-genetic effects underlying infectious disease transmission from temporal epidemic data
Individuals differ widely in their contribution to the spread of infection within and across populations. Three key epidemiological host traits affect infectious disease spread: susceptibility (propensity to acquire infection), infectivity (propensity to transmit infection to others) and recoverability (propensity to recover quickly). Interventions aiming to reduce disease spread may target improvement in any one of these traits, but the necessary statistical methods for obtaining risk estimates are lacking. In this paper we introduce a novel software tool called SIRE (standing for "Susceptibility, Infectivity and Recoverability Estimation"), which allows for the first time simultaneous estimation of the genetic effect of a single nucleotide polymorphism (SNP), as well as non-genetic influences on these three unobservable host traits. SIRE implements a flexible Bayesian algorithm which accommodates a wide range of disease surveillance data comprising any combination of recorded individual infection and/or recovery times, or disease diagnostic test results. Different genetic and non-genetic regulations and data scenarios (representing realistic recording schemes) were simulated to validate SIRE and to assess their impact on the precision, accuracy and bias of parameter estimates. This analysis revealed that with few exceptions, SIRE provides unbiased, accurate parameter estimates associated with all three host traits. For most scenarios, SNP effects associated with recoverability can be estimated with highest precision, followed by susceptibility. For infectivity, many epidemics with few individuals give substantially more statistical power to identify SNP effects than the reverse. Importantly, precise estimates of SNP and other effects could be obtained even in the case of incomplete, censored and relatively infrequent measurements of individuals' infection or survival status, albeit requiring more individuals to yield equivalent precision. SIRE represents a new tool for analysing a wide range of experimental and field disease data with the aim of discovering and validating SNPs and other factors controlling infectious disease transmission
Disseminated Adenovirus Infection After Combined Liver-Kidney Transplantation
Human adenovirus (HAdV) infections are well-described after hematopoietic stem cell transplantation but less well understood in solid organ transplantation (SOT). We describe a case of disseminated HAdV type 21 infection 5 months after combined liver-kidney transplantation, expanding the limited literature describing this infection in the SOT population
First-light LBT nulling interferometric observations: warm exozodiacal dust resolved within a few AU of eta Corvi
We report on the first nulling interferometric observations with the Large
Binocular Telescope Interferometer (LBTI), resolving the N' band (9.81 - 12.41
um) emission around the nearby main-sequence star eta Crv (F2V, 1-2 Gyr). The
measured source null depth amounts to 4.40% +/- 0.35% over a field-of-view of
140 mas in radius (~2.6\,AU at the distance of eta Corvi) and shows no
significant variation over 35{\deg} of sky rotation. This relatively low null
is unexpected given the total disk to star flux ratio measured by Spitzer/IRS
(~23% across the N' band), suggesting that a significant fraction of the dust
lies within the central nulled response of the LBTI (79 mas or 1.4 AU).
Modeling of the warm disk shows that it cannot resemble a scaled version of the
Solar zodiacal cloud, unless it is almost perpendicular to the outer disk
imaged by Herschel. It is more likely that the inner and outer disks are
coplanar and the warm dust is located at a distance of 0.5-1.0 AU,
significantly closer than previously predicted by models of the IRS spectrum
(~3 AU). The predicted disk sizes can be reconciled if the warm disk is not
centrosymmetric, or if the dust particles are dominated by very small grains.
Both possibilities hint that a recent collision has produced much of the dust.
Finally, we discuss the implications for the presence of dust at the distance
where the insolation is the same as Earth's (2.3 AU).Comment: 9 pages, 6 figures, accepted for publication in Ap
The HOSTS Survey for Exozodiacal Dust: Preliminary results and future prospects
[abridged] The presence of large amounts of dust in the habitable zones of
nearby stars is a significant obstacle for future exo-Earth imaging missions.
We executed an N band nulling interferometric survey to determine the typical
amount of such exozodiacal dust around a sample of nearby main sequence stars.
The majority of our data have been analyzed and we present here an update of
our ongoing work. We find seven new N band excesses in addition to the high
confidence confirmation of three that were previously known. We find the first
detections around Sun-like stars and around stars without previously known
circumstellar dust. Our overall detection rate is 23%. The inferred occurrence
rate is comparable for early type and Sun-like stars, but decreases from 71%
[+11%/-20%] for stars with previously detected mid- to far-infrared excess to
11% [+9%/-4%] for stars without such excess, confirming earlier results at high
confidence. For completed observations on individual stars, our sensitivity is
five to ten times better than previous results. Assuming a lognormal luminosity
function of the dust, we find upper limits on the median dust level around all
stars without previously known mid to far infrared excess of 11.5 zodis at 95%
confidence level. The corresponding upper limit for Sun-like stars is 16 zodis.
An LBTI vetted target list of Sun-like stars for exo-Earth imaging would have a
corresponding limit of 7.5 zodis. We provide important new insights into the
occurrence rate and typical levels of habitable zone dust around main sequence
stars. Exploiting the full range of capabilities of the LBTI provides a
critical opportunity for the detailed characterization of a sample of
exozodiacal dust disks to understand the origin, distribution, and properties
of the dust.Comment: To appear in SPIE Astronomical Telescopes + Instrumentation 2018
proceedings. Some typos fixed, one reference adde
The Givenness of the Human Learning Experience and Its Incompatibility with Information Analytics
The rise of learning analytics, the application of complex metrics developed to exploit the proliferation of ‘Big Data’ in educational work, raises important moral questions about the nature of what is measurable in education. Teachers, schools and nations are increasingly held to account based on metrics, exacerbating the tendency for fine-grained measurement of learning experiences. In this article, the origins of learning analytics ontology are explored, drawing upon core ideas in the philosophy of computing, such as the general definition of information and the information-theoretic account of knowledge. Drawing upon a reading of Descartes Meditatio II, which extends the phenomenology of Jean-Luc Marion into a pedagogy of intentionality, the article identifies a fundamental incompatibility between the subjective experience of learning and the information-theoretic account of knowledge. Human subjects experience and value their own information incommensurably with the ways in which computers measure and quantify information. The consequences of this finding for the design of online learning environments, and the necessary limitations of learning analytics and measurement are explored
The HOSTS survey - exozodiacal dust measurements for 30 stars
The Hunt for Observable Signatures of Terrestrial Systems survey searches for dust near the habitable zones (HZs) around nearby, bright main-sequence stars. We use nulling interferometry in the N band to suppress the bright stellar light and to probe for low levels of HZ dust around the 30 stars observed so far. Our overall detection rate is 18%, including four new detections, among which are the first three around Sun-like stars and the first two around stars without any previously known circumstellar dust. The inferred occurrence rates are comparable for early-type and Sun-like stars, but decrease from {60}-21+16% for stars with previously detected cold dust to {8}-3+10% for stars without such excess, confirming earlier results at higher sensitivity. For completed observations on individual stars, our sensitivity is five to ten times better than previous results. Assuming a lognormal excess luminosity function, we put upper limits on the median HZ dust level of 13 zodis (95% confidence) for a sample of stars without cold dust and of 26 zodis when focusing on Sun-like stars without cold dust. However, our data suggest that a more complex luminosity function may be more appropriate. For stars without detectable Large Binocular Telescope Interferometer (LBTI) excess, our upper limits are almost reduced by a factor of two, demonstrating the strength of LBTI target vetting for future exo-Earth imaging missions. Our statistics are limited so far, and extending the survey is critical to informing the design of future exo-Earth imaging surveys
Recommended from our members
Individual common variants exert weak effects on the risk for autism spectrum disorders.
While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASDs), the contribution of common variation to the risk of developing ASD is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating the association of individual single nucleotide polymorphisms (SNPs), we also sought evidence that common variants, en masse, might affect the risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest P-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. In contrast, allele scores derived from the transmission of common alleles to Stage 1 cases significantly predict case status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele score results, it is reasonable to conclude that common variants affect the risk for ASD but their individual effects are modest
- …