35 research outputs found
Awareness, treatment and control of cardiometabolic disorders in Chinese adults with diabetes: a national representative population study
BACKGROUND: The diagnosis of diabetes has important clinic implications for the prevention and management of cardiometabolic disorders. We aimed to investigate the awareness, treatment and control of hypertension and dyslipidemia in previously-diagnosed and newly-diagnosed diabetes in Chinese adult population. METHODS: We conducted a cross-sectional survey in a nationally representative sample of 98658 Chinese adults aged 18 years or older in 2010, using a complex, multistage, probability sampling design. Glycemic status were defined according to the 2010 American Diabetes Association criteria. Hypertension was diagnosed by the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Dyslipidemia was diagnosed by the 2004 National Cholesterol Education Program Adult Treatment Panel III. RESULTS: The weighted prevalence of hypertension and dyslipidemia gradually increased in adults with normal glucose regulation, prediabetes, newly-diagnosed diabetes and previously-diagnosed diabetes. Compared to newly-diagnosed diabetes patients, previously-diagnosed diabetes patients were more likely to be aware of hypertension (weighted percentage [95% confidence interval]: 55.2% [52.9%-57.5%] vs 37.6% [35.9%-39.3%]) and dyslipidemia (33.9% [31.8%-36.1%] vs 12.8% [11.7%-13.9%]), to receive blood pressure-lowing (43.7% [41.5%-46.0%] vs 27.5% [26.0%-29.0%]) and lipid-lowering (18.9% [17.2%-20.7%] vs 5.4% [4.6%-6.2%]) therapies, and to have controlled blood pressure (4.7% [3.5%-6.2%] vs 3.5% [2.6%-4.8%]) and lipid (15.9% [12.3%-20.3%] vs 9.5% [6.4%-13.8%]) levels. CONCLUSIONS: Detection and control of hypertension and dyslipidemia is far from optimal in Chinese adults, especially in newly-diagnosed diabetes. Improved screening for diabetes is required to promote a better prevention, treatment and control of hypertension and dyslipidemia in China. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12933-015-0191-6) contains supplementary material, which is available to authorized users
Recommended from our members
Master's Recitals
Recital presented at the UNT College of Music Voertman Hall
The Research on Surface Restructure Method of Discrete Data Based on Multi-cores Environment
Application of flow control strategy of blowing, synthetic and plasma jet actuators in vertical axis wind turbines
A Model of Multi-Finger Coordination in Keystroke Movement
In multi-finger coordinated keystroke actions by professional pianists, movements are precisely regulated by multiple motor neural centers, exhibiting a certain degree of coordination in finger motions. This coordination enhances the flexibility and efficiency of professional pianists’ keystrokes. Research on the coordination of keystrokes in professional pianists is of great significance for guiding the movements of piano beginners and the motion planning of exoskeleton robots, among other fields. Currently, research on the coordination of multi-finger piano keystroke actions is still in its infancy. Scholars primarily focus on phenomenological analysis and theoretical description, which lack accurate and practical modeling methods. Considering that the tendon of the ring finger is closely connected to adjacent fingers, resulting in limited flexibility in its movement, this study concentrates on coordinated keystrokes involving the middle and ring fingers. A motion measurement platform is constructed, and Leap Motion is used to collect data from 12 professional pianists. A universal model applicable to multiple individuals for multi-finger coordination in keystroke actions based on the backpropagation (BP) neural network is proposed, which is optimized using a genetic algorithm (GA) and a sparrow search algorithm (SSA). The angular rotation of the ring finger’s MCP joint is selected as the model output, while the individual difference information and the angular data of the middle finger’s MCP joint serve as inputs. The individual difference information used in this study includes ring finger length, middle finger length, and years of piano training. The results indicate that the proposed SSA-BP neural network-based model demonstrates superior predictive accuracy, with a root mean square error of 4.8328°. Based on this model, the keystroke motion of the ring finger’s MCP joint can be accurately predicted from the middle finger’s keystroke motion information, offering an evaluative method and scientific guidance for the training of multi-finger coordinated keystrokes in piano learners
Autocrine S100B in astrocytes promotes VEGF-dependent inflammation and oxidative stress, and causes impairment of neuroprotection
Abstract
Minimal hepatic encephalopathy (MHE) is strongly associated with neuroinflammation. Nevertheless, the underlying mechanism of the induction of inflammatory response in MHE astrocytes remains unclear. In this study, we further investigated the effect and mechanism of S100B, predominant isoform expressed and released from mature astrocytes, on MHE-like neuropathology in the MHE rat model. We discovered that S100B expressions and autocrine were significantly increased in MHE rats and astrocytes isolated from MHE rats. Furthermore, we found that S100B stimulates VEGF expression via the interaction between TLR2 and RAGE in an autocrine manner. S100B-facilitated VEGF autocrine expression further led to a VEGFR2 and COX-2 interaction, which in turn induced the activation of NFƙB, eventually resulting in inflammation and oxidative stress caused by MHE astrocytes. Compared to WT astrocytes, impairment of MHE astrocytes supported neuronal growth in co-culture. To sum up, comprehensive-understanding of the impact of S100B-overexpressed MHE astrocyte on MHE pathology may provide insights into the etiology of MHE.</jats:p
Autocrine S100B in Astrocytes Promotes VEGF-dependent Inflammation and Oxidative Stress, and Causes Impairment of Neuroprotection
Abstract
Background: Our previous study revealed that minimal hepatic encephalopathy (MHE) is strongly associated with neuroinflammation. Nevertheless, the underlying mechanism of the induction of inflammatory response in MHE astrocytes remains unclear. Methods: In this study, we further investigated the effect and mechanism of S100B, predominant isoform expressed and released from mature astrocytes, on MHE-like neuropathology in the MHE rat model. Results: We discovered that S100B expressions and autocrine were significantly increased in MHE rats and astrocytes isolated from MHE rats. Furthermore, we found that S100B stimulates VEGF expression via the interaction between TLR2 and RAGE in an autocrine manner. S100B-facilitated VEGF autocrine expression further led to a VEGFR2 and COX-2 interaction, which in turn induced the activation of NFƙB, eventually resulting in inflammation and oxidative stress caused by MHE astrocytes. Compared to WT astrocytes, impairment of MHE astrocytes supported neuronal growth in co-culture.Conclusions: To sum up, comprehensive-understanding of the impact of S100B-overexpressed MHE astrocyte on MHE pathology may provide insights into the etiology of MHE.</jats:p
