62 research outputs found
PMMTalk: Speech-Driven 3D Facial Animation from Complementary Pseudo Multi-modal Features
Speech-driven 3D facial animation has improved a lot recently while most
related works only utilize acoustic modality and neglect the influence of
visual and textual cues, leading to unsatisfactory results in terms of
precision and coherence. We argue that visual and textual cues are not trivial
information. Therefore, we present a novel framework, namely PMMTalk, using
complementary Pseudo Multi-Modal features for improving the accuracy of facial
animation. The framework entails three modules: PMMTalk encoder, cross-modal
alignment module, and PMMTalk decoder. Specifically, the PMMTalk encoder
employs the off-the-shelf talking head generation architecture and speech
recognition technology to extract visual and textual information from speech,
respectively. Subsequently, the cross-modal alignment module aligns the
audio-image-text features at temporal and semantic levels. Then PMMTalk decoder
is employed to predict lip-syncing facial blendshape coefficients. Contrary to
prior methods, PMMTalk only requires an additional random reference face image
but yields more accurate results. Additionally, it is artist-friendly as it
seamlessly integrates into standard animation production workflows by
introducing facial blendshape coefficients. Finally, given the scarcity of 3D
talking face datasets, we introduce a large-scale 3D Chinese Audio-Visual
Facial Animation (3D-CAVFA) dataset. Extensive experiments and user studies
show that our approach outperforms the state of the art. We recommend watching
the supplementary video
FGF22 deletion causes hidden hearing loss by affecting the function of inner hair cell ribbon synapses
Ribbon synapses are important structures in transmitting auditory signals from the inner hair cells (IHCs) to their corresponding spiral ganglion neurons (SGNs). Over the last few decades, deafness has been primarily attributed to the deterioration of cochlear hair cells rather than ribbon synapses. Hearing dysfunction that cannot be detected by the hearing threshold is defined as hidden hearing loss (HHL). The relationship between ribbon synapses and FGF22 deletion remains unknown. In this study, we used a 6-week-old FGF22 knockout mice model (Fgf22–/–) and mainly focused on alteration in ribbon synapses by applying the auditory brainstem response (ABR) test, the immunofluorescence staining, the patch-clamp recording, and quantitative real-time PCR. In Fgf22–/– mice, we found the decreased amplitude of ABR wave I, the reduced vesicles of ribbon synapses, and the decreased efficiency of exocytosis, which was suggested by a decrease in the capacitance change. Quantitative real-time PCR revealed that Fgf22–/– led to dysfunction in ribbon synapses by downregulating SNAP-25 and Gipc3 and upregulating MEF2D expression, which was important for the maintenance of ribbon synapses’ function. Our research concluded that FGF22 deletion caused HHL by affecting the function of IHC ribbon synapses and may offer a novel therapeutic target to meet an ever-growing demand for deafness treatment
Low Serum Magnesium Level Is Associated with Microalbuminuria in Chinese Diabetic Patients
Whether serum magnesium deficiency is independently associated with the prevalence of microalbuminuria is still unclear. The objective of the present study was to elucidate the association between serum magnesium and microalbuminuria in diabetic patients. A cross-sectional study was conducted in 1829 diabetic subjects (aged ≥ 40 years) from Shanghai, China. Subjects were divided into three groups according to serum magnesium tertiles. A first-voided early-morning spot urine sample was obtained for urinary albumin-creatinine ratio (UACR) measurement. Microalbuminuria was defined as 30 mg/g ≤ UACR < 300 mg/g. Overall, 208 (11.37%) of the study population had microalbuminuria, with similar proportions in both genders (). The prevalence of microalbuminuria in tertile 1 of serum magnesium was higher than the prevalence in tertile 2 and tertile 3 (15.98%, 9.72%, and 8.46%, resp.; for trend <0.0001). After adjustment for age, sex, BMI, blood pressure, lipidaemic profile, HbA1c, eGFR, history of cardiovascular disease, HOMA-IR, antihypertensive and antidiabetic medication, and diabetes duration, we found that, compared with the subjects in tertile 3 of serum magnesium, those in tertile 1 had 1.85 times more likeliness to have microalbuminuria. We concluded that low serum magnesium level was significantly associated with the prevalence of microalbuminuria in middle-aged and elderly Chinese
Design of Entire-Flight Pinpoint Return Trajectory for Lunar DRO via Deep Neural Network
Lunar DRO pinpoint return is the final stage of manned deep space exploration via a lunar DRO station. A re-entry capsule suffers from complicated dynamic and thermal effects during an entire flight. The optimization of the lunar DRO return trajectory exhibits strong non-linearity. To obtain a global optimal return trajectory, an entire-flight lunar DRO pinpoint return model including a Moon–Earth transfer stage and an Earth atmosphere re-entry stage is constructed. A re-entry point on the atmosphere boundary is introduced to connect these two stages. Then, an entire-flight global optimization framework for lunar DRO pinpoint return is developed. The design of the entire-flight return trajectory is simplified as the optimization of the re-entry point. Moreover, to further improve the design efficiency, a rapid landing point prediction method for the Earth re-entry is developed based on a deep neural network. This predicting network maps the re-entry point in the atmosphere and the landing point on Earth with respect to optimal control re-entry trajectories. Numerical simulations validate the optimization accuracy and efficiency of the proposed methods. The entire-flight return trajectory achieves a high accuracy of the landing point and low fuel consumption
Non-spatial and spatial heterogeneity revealed a suppressive immune feature of Siglec-15 in lung adenocarcinomas
Abstract Background Sialic acid-binding immunoglobulin-like lectin-15 (Siglec-15) has emerged as a novel immunotherapy candidate, which deserves a comprehensive investigation in lung adenocarcinoma (LUAD). Methods Multiplex fluorescence‐based immunohistochemistry was conducted to assess Siglec-15 expression and tumor-infiltrating immune cells in LUAD from Tianjin cohort, with validation cohorts Xinchao 04 and 07. Results This study revealed that Siglec-15 was positively correlated with CD8+ T cells and tumor-associated macrophages (TAMs) infiltration, but CD8+ T cells were mostly infiltrated in the stroma area, not in the tumor area. Spatially, fewer CD8+ T cells surrounded Siglec-15+ tumor cells in PD-L1− cells, and more TAMs surrounded Siglec-15+ tumor cells in PD-L1−/+ cells. Siglec-15+ TAMs infiltrated with more CD8+ T cells, and were closer to CD8+ T cells than Siglec-15− TAMs and Siglec-15+ tumor cells. Siglec-15+ TAMs infiltrated with more Tregs and were closer to Tregs than Siglec-15+ tumor cells. Siglec-15+ tumor cells or TAMs reversed CD8+ T cells prognosis value, and enhanced the prognosis value of Tregs and TAMs. The immunotyping based on Siglec-15 and CD8A / CD8+ T cells revealed that patients with high CD8A and Siglec-15 expression exhibited immune activation. Patients with low CD8A expression / CD8+ T cells infiltration and Siglec-15 overexpression were related to the activation of immunosuppressive signature and metabolism-related pathway, and infiltrated with more TAMs. Conclusions We revealed the distinct characteristics between Siglec-15+ tumor cells and TAMs in relation to CD8+ T cells, and a unique relationship between Siglec-15 and immunosuppressive TIME in LUAD, which may provide potential value for anti-Siglec-15 therapy
Effects of Fire Severity and Topography on Soil Black Carbon Accumulation in Boreal Forest of Northeast China
Black carbon (BC) from incomplete combustion of biomass and fossil fuel is widespread in sediments and soils because of its high stability in nature and is considered an important component of the global carbon sink. However, knowledge of BC stocks and influencing factors in forest ecosystems is currently limited. We investigated soil BC contents in burned boreal forests of the Great Khingan Mountains, northeast China. We collected soil samples from 14 sites with different fire severities, slope positions and aspects. The samples were analyzed by the chemo-thermal oxidation method to obtain their BC concentrations. The BC concentrations of the studied soils ranged from 0.03 to 36.91 mg C g−1, with a mean of 1.44 ± 0.11 mg C g−1. BC concentrations gradually decline with depth, and that was significantly less in the 20–30 cm layer compared to all shallower layers. Forests burned by moderate-severity fires had the highest soil BC, the shady aspect had higher soil BC than the sunny aspect. Our results provide some basic data for evaluating the soil BC sink in boreal forests, which is a useful amendment to current carbon budget and carbon cycle in boreal forest ecosystems
The Alteration of Carnitine Metabolism in Second Trimester in GDM and a Nomogram for Predicting Macrosomia
Objective. The metabolism of three major nutrients (sugar, lipid, and protein) will change during pregnancy, especially in the second trimester. The present study is aimed at evaluating carnitine alteration in fatty acid metabolism in the second trimester of pregnancy and the correlation between carnitine and GDM. Methods. 450 pregnant women were recruited in the present prospective study. Metabolic profiling of 31 carnitines was detected by LC-MS/MS in these women. Correlation between carnitine metabolism and maternal and neonatal complication with GDM was analyzed. Results. We found the levels of 7 carnitines increased in age>35, BMI≥30, weight gain>20 kg, and ART pregnant groups, but the level of free carnitine (C0) decreased. Nine carnitines were specific metabolites of GDM. Prepregnancy BMI, weight gain, and carnitines (C0, C3, and C16) were independent risk factors associated with GDM and related macrosomia. C0 was negatively correlated with FBG, LDL, TG, and TC. A nomogram was developed for predicting macrosomia in GDM based on carnitine-related metabolic variables. Conclusion. The carnitine metabolism in the second trimester is abnormal in GDM women. The dysfunction of carnitine metabolism is closely related to the abnormality of blood lipid and glucose in GDM. Carnitine metabolism abnormality could predict macrosomia complicated with GDM
Expression signature, prognosis value, and immune characteristics of Siglec-15 identified by pan-cancer analysis
Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) is considered a novel anti-tumor target comparable to programmed cell death 1 ligand 1(PD-L1). However, little is known about Siglec-15. Our study aims to understand its expression signature, prognosis value, immune infiltration pattern, and biological function using multi-omic bioinformatics from public databases and verify them in lung cancer patients. Integrated analysis of The Cancer Genome Atlas and Genotype-Tissue Expression portals showed Siglec-15 was overexpressed across cancers. Genetic and epigenetic alteration analysis was performed using cBioportal and UALCAN, showed Siglec-15 was regulated at the genetic and epigenetic levels. Survival estimated using Kaplan–Meier plotter indicated high Siglec-15 expression correlated with favorable or unfavorable outcomes depending on the different type and subtype of cancer. Components of immune microenvironment were analyzed using CIBERSORT, and the correlation between immune cells and Siglec-15 was found to be distinct across cancer types. Based on Gene Set Enrichment Analysis, Siglec-15 was implicated in pathways involved in immunity, metabolism, cancer, and infectious diseases. Lung cancer patients with positive Siglec-15 expression showed significantly short survival rates in progression-free survival concomitant with reduced infiltration of CD20 + B, and dendritic cells by immunohistochemistry. Quantitative real-time PCR results indicated the overexpression of Siglec-15 was correlated with activation of the chemokine signaling pathway. In conclusion, Siglec-15 could serve as a vital prognostic biomarker and play an immune-regulatory role in tumors. These results provide us with clues to better understand Siglec-15 from the perspective of bioinformatics and highlight the importance of Siglec-15 in many types of cancer
- …