990 research outputs found

    CCPL: Contrastive Coherence Preserving Loss for Versatile Style Transfer

    Full text link
    In this paper, we aim to devise a universally versatile style transfer method capable of performing artistic, photo-realistic, and video style transfer jointly, without seeing videos during training. Previous single-frame methods assume a strong constraint on the whole image to maintain temporal consistency, which could be violated in many cases. Instead, we make a mild and reasonable assumption that global inconsistency is dominated by local inconsistencies and devise a generic Contrastive Coherence Preserving Loss (CCPL) applied to local patches. CCPL can preserve the coherence of the content source during style transfer without degrading stylization. Moreover, it owns a neighbor-regulating mechanism, resulting in a vast reduction of local distortions and considerable visual quality improvement. Aside from its superior performance on versatile style transfer, it can be easily extended to other tasks, such as image-to-image translation. Besides, to better fuse content and style features, we propose Simple Covariance Transformation (SCT) to effectively align second-order statistics of the content feature with the style feature. Experiments demonstrate the effectiveness of the resulting model for versatile style transfer, when armed with CCPL.Comment: Accepted by ECCV2022 as an oral paper; code url: https://github.com/JarrentWu1031/CCPL Video demo: https://youtu.be/scZuJCXhL1

    5-Phenyl-3,4,4a,5,6,12c-hexa­hydro-2H-benzo[f]pyrano[3,2-c]quinoline

    Get PDF
    In the title compound, C22H21N, the pyridine ring adopts a distorted boat conformation, while the adjacent pyran ring adopts a chair conformation; the heterocyclic rings make a dihedral angle of 40.1 (2)° with each other

    2-[3-(2-Chloro­phen­yl)-5-oxo-1,5-diphenyl­pentyl­idene]malononitrile

    Get PDF
    In the title compound, C26H19ClN2O, the 2-chloro­phenyl group forms dihedral angles of 59.6 (1) and 31.9 (1)° with the phenyl rings. The two phenyl rings are inclined at a dihedral angle of 32.9 (1)° with respect to each other. In the crystal, an inter­molecular C—H⋯N hydrogen bond links the mol­ecules into a polymeric chain running along the c axis

    Poly[diaqua­bis(μ2-azido-κ2 N 1:N 1)bis­(μ3-1-oxoisonicotinato-κ3 O:O′:O′′)dicadmium(II)]

    Get PDF
    In the title compound, [Cd2(C6H4NO3)2(N3)2(H2O)2]n, one CdII atom is located on an inversion center and is coordinated by four O atoms from four bridging 1-oxoisonicotinate ligands and two N atoms of two bridging azide ligands in a slightly distorted octa­hedral geometry. The other CdII atom, also lying on an inversion center, is coordinated by four O atoms from two bridging 1-oxoisonicotinate ligands and two water mol­ecules and two N atoms of two bridging azide ligands in a slightly distorted octa­hedral geometry. The Cd atoms are connected via the 1-oxoisonicotinate and azide ligands into a two-dimensional coordination network. The crystal structure involves O—H⋯N and O—H⋯O hydrogen bonds

    Kinematics of the Broad-line Region of 3C 273 from a Ten-year Reverberation Mapping Campaign

    Get PDF
    Despite many decades of study, the kinematics of the broad-line region of 3C~273 are still poorly understood. We report a new, high signal-to-noise, reverberation mapping campaign carried out from November 2008 to March 2018 that allows the determination of time lags between emission lines and the variable continuum with high precision. The time lag of variations in Hβ\beta relative to those of the 5100 Angstrom continuum is 146.812.1+8.3146.8_{-12.1}^{+8.3} days in the rest frame, which agrees very well with the Paschen-α\alpha region measured by the GRAVITY at The Very Large Telescope Interferometer. The time lag of the Hγ\gamma emission line is found to be nearly the same as for Hβ\beta. The lag of the Fe II emission is 322.057.9+55.5322.0_{-57.9}^{+55.5} days, longer by a factor of \sim2 than that of the Balmer lines. The velocity-resolved lag measurements of the Hβ\beta line show a complex structure which can be possibly explained by a rotation-dominated disk with some inflowing radial velocity in the Hβ\beta-emitting region. Taking the virial factor of fBLR=1.3f_{\rm BLR} = 1.3, we derive a BH mass of M=4.10.4+0.3×108MM_{\bullet} = 4.1_{-0.4}^{+0.3} \times 10^8 M_{\odot} and an accretion rate of 9.3LEddc29.3\,L_{\rm Edd}\,c^{-2} from the Hβ\beta line. The decomposition of its HSTHST images yields a host stellar mass of M=1011.3±0.7MM_* = 10^{11.3 \pm 0.7} M_\odot, and a ratio of M/M2.0×103M_{\bullet}/M_*\approx 2.0\times 10^{-3} in agreement with the Magorrian relation. In the near future, it is expected to compare the geometrically-thick BLR discovered by the GRAVITY in 3C 273 with its spatially-resolved torus in order to understand the potential connection between the BLR and the torus.Comment: 17 pages, 12 figures, 6 tables, accepted for publication in The Astrophysical Journa
    corecore