13,790 research outputs found
Current sensorless model predictive torque control based on adaptive backstepping observer for PMSM drives
A novel adaptive backstepping observer is proposed and model predictive torque control (MPTC) strategy is considered for three-phase permanent magnet synchronous motor (PMSM) drives without any current sensor. Generally, instantaneous stator currents are required for successful operation of MPTC. If the stator current sensors fail, the most common technique for reconstructing stator currents mainly focuses on using information from a single current sensor in the DC-link of an inverter. Nevertheless, the existence of immeasurable regions in the output voltage hexagon results in that the three-phase currents will not be reliably detected since one or more of the active state vectors are not applied long enough to insure accurate measurements. In addition, the technique may suffer from the very noisy of DC-link current feedback. To avoid these drawbacks, making use of the technique of adaptive backstepping, a novel observer is proposed. The designed observer can be capable of concurrent estimation of stator currents and resistance under the assumption that rotor speed and inverter output voltage as well as DC-link voltage are available for measurement. Stability and convergence of the observer are analytically verified based on Lyapunov stability theory. In order to reduce the torque & flux ripples and improve drives control performance, MPTC strategy is employed. The proposed algorithm is less complicated and its implement is relatively easy. It can ensure that the whole drives system achieves satisfactory torque & speed control and strong robustness. Extensive simulation validates the feasibility and effectiveness of the proposed scheme
Existence problem of proton semi-bubble structure in the state of Si
The fully self-consistent Hartree-Fock (HF) plus random phase approximation
(RPA) based on Skyrme-type interaction is used to study the existence problem
of proton semi-bubble structure in the state of Si. The
experimental excitation energy and the B(E2) strength of the state in
Si can be reproduced quite well. The tensor effect is also studied. It
is shown that the tensor interaction has a notable impact on the excitation
energy of the state and a small effect on the B(E2) value. Besides, its
effect on the density distributions in the ground and state of
Si is negligible. Our present results with T36 and T44 show that the
state of Si is mainly caused by proton transiton from orbit to orbit, and the existence of a proton
semi-bubble structure in this state is very unlikely.Comment: 6 pages, 3 figures, 3 table
Fault tolerant model predictive control of three-phase permanent magnet synchronous motors
A new fault tolerant model predictive control (FTMPC) strategy is proposed for three-phase magnetically isotropic permanent magnet synchronous motor (PMSM) with complete loss of one phase (LOP) or loss of one leg (LOL) of the inverter. The dynamic model of PMSM with LOP or LOL is derived in abc- System. The principle of FTMPC is investigated, its predictive model for remaining two stator phase currents is established after LOP or LOL occurs, and the flux estimator based on current model is employed in order to calculate the stator flux & its corresponding torque. Extra-leg extra-switch inverter is used as power unit. The PI controller is put to use for regulating rotor speed and generating reference torque. Dynamic responses of healthy MPC and unhealthy FTMPC for PMSM systems are given to compare their performance via simulation and some analysis is presented. The simulation results show that the proposed FTMPC strategy not only allows for continuous and disturbance-free operation of the unhealthy PMSM with LOP or LOL but also preserves satisfactory torque and speed control. And then the effectiveness of the proposed schemes in this paper is demonstrated
- …