2,445 research outputs found
Study on the Influence of Sudden Change of Water Level on High Fill Canal Segment
Extreme conditions will cause the water level of high fill canal segment to change suddenly, which will affect the velocity and pore pressure of the slope. In this paper, numerical method is used to study the influence of water level sudden change on seepage characteristics of high fill canal segment. HyperMesh software is used to establish the finite element model of typical high fill canal segment under complex foundation conditions. Through the combination of secondary development program and fluid-structure coupling calculation method, the fluid structure cou-pling effect of canal under sudden change of water level is analyzed in ABAQUS. The results show that when the water level changes suddenly, the pore pressure below the free water surface and the velocity near the free surface will be greatly affected
Plane grid structure damage location identification by model curvature
AbstractThe mode curvature is good identification effect for one-dimensional beam damage location. The whole plane grid structure modal shape similar to 2D bending plate, also similar to beam in each dimension, therefore, the beam damage location identification by curvature mode method can be improved for plane grid structure. The damage location identification method is established by computation and integration the two directions of the damaged structure modal curvature changes. Through the simulation examples proved the feasibility of this method
Non-Neighbors Also Matter to Kriging: A New Contrastive-Prototypical Learning
Kriging aims at estimating the attributes of unsampled geo-locations from
observations in the spatial vicinity or physical connections, which helps
mitigate skewed monitoring caused by under-deployed sensors. Existing works
assume that neighbors' information offers the basis for estimating the
attributes of the unobserved target while ignoring non-neighbors. However,
non-neighbors could also offer constructive information, and neighbors could
also be misleading. To this end, we propose ``Contrastive-Prototypical''
self-supervised learning for Kriging (KCP) to refine valuable information from
neighbors and recycle the one from non-neighbors. As a pre-trained paradigm, we
conduct the Kriging task from a new perspective of representation: we aim to
first learn robust and general representations and then recover attributes from
representations. A neighboring contrastive module is designed that coarsely
learns the representations by narrowing the representation distance between the
target and its neighbors while pushing away the non-neighbors. In parallel, a
prototypical module is introduced to identify similar representations via
exchanged prediction, thus refining the misleading neighbors and recycling the
useful non-neighbors from the neighboring contrast component. As a result, not
all the neighbors and some of the non-neighbors will be used to infer the
target. To encourage the two modules above to learn general and robust
representations, we design an adaptive augmentation module that incorporates
data-driven attribute augmentation and centrality-based topology augmentation
over the spatiotemporal Kriging graph data. Extensive experiments on real-world
datasets demonstrate the superior performance of KCP compared to its peers with
6% improvements and exceptional transferability and robustness. The code is
available at https://github.com/bonaldli/KCPComment: Accepted in AISTATS 202
Temporal-spatial Correlation Attention Network for Clinical Data Analysis in Intensive Care Unit
In recent years, medical information technology has made it possible for
electronic health record (EHR) to store fairly complete clinical data. This has
brought health care into the era of "big data". However, medical data are often
sparse and strongly correlated, which means that medical problems cannot be
solved effectively. With the rapid development of deep learning in recent
years, it has provided opportunities for the use of big data in healthcare. In
this paper, we propose a temporal-saptial correlation attention network (TSCAN)
to handle some clinical characteristic prediction problems, such as predicting
death, predicting length of stay, detecting physiologic decline, and
classifying phenotypes. Based on the design of the attention mechanism model,
our approach can effectively remove irrelevant items in clinical data and
irrelevant nodes in time according to different tasks, so as to obtain more
accurate prediction results. Our method can also find key clinical indicators
of important outcomes that can be used to improve treatment options. Our
experiments use information from the Medical Information Mart for Intensive
Care (MIMIC-IV) database, which is open to the public. Finally, we have
achieved significant performance benefits of 2.0\% (metric) compared to other
SOTA prediction methods. We achieved a staggering 90.7\% on mortality rate,
45.1\% on length of stay. The source code can be find:
\url{https://github.com/yuyuheintju/TSCAN}
Efficient Image-Text Retrieval via Keyword-Guided Pre-Screening
Under the flourishing development in performance, current image-text
retrieval methods suffer from -related time complexity, which hinders their
application in practice. Targeting at efficiency improvement, this paper
presents a simple and effective keyword-guided pre-screening framework for the
image-text retrieval. Specifically, we convert the image and text data into the
keywords and perform the keyword matching across modalities to exclude a large
number of irrelevant gallery samples prior to the retrieval network. For the
keyword prediction, we transfer it into a multi-label classification problem
and propose a multi-task learning scheme by appending the multi-label
classifiers to the image-text retrieval network to achieve a lightweight and
high-performance keyword prediction. For the keyword matching, we introduce the
inverted index in the search engine and create a win-win situation on both time
and space complexities for the pre-screening. Extensive experiments on two
widely-used datasets, i.e., Flickr30K and MS-COCO, verify the effectiveness of
the proposed framework. The proposed framework equipped with only two embedding
layers achieves querying time complexity, while improving the retrieval
efficiency and keeping its performance, when applied prior to the common
image-text retrieval methods. Our code will be released.Comment: 11 pages, 7 figures, 6 table
Characterizing and Predicting Early Reviewers for Effective Product Marketing on E-Commerce Websites
Online reviews have become an important source of information for users before making an informed purchase decision. Early reviews of a product tend to have a high impact on the subsequent product sales. In this paper, we take the initiative to study the behavior characteristics of early reviewers through their posted reviews on two real-world large e-commerce platforms, i.e., Amazon and Yelp. In specific, we divide product lifetime into three consecutive stages, namely early, majority and laggards. A user who has posted a review in the early stage is considered as an early reviewer. We quantitatively characterize early reviewers based on their rating behaviors, the helpfulness scores received from others and the correlation of their reviews with product popularity. We have found that (1) an early reviewer tends to assign a higher average rating score; and (2) an early reviewer tends to post more helpful reviews. Our analysis of product reviews also indicates that early reviewers' ratings and their received helpfulness scores are likely to influence product popularity. By viewing review posting process as a multiplayer competition game, we propose a novel margin-based embedding model for early reviewer prediction. Extensive experiments on two different e-commerce datasets have shown that our proposed approach outperforms a number of competitive baselines
- …