47 research outputs found

    End to End Performance Analysis of Relay Cooperative Communication Based on Parked Cars

    Full text link
    Parking lots (PLs) are usually full with cars. If these cars are formed into a self-organizing vehicular network, they can be new kind of road side units (RSUs) in urban area to provide communication data forwarding between mobile terminals nearby and a base station. However cars in PLs can leave at any time, which is neglected in the existing studies. In this paper, we investigate relay cooperative communication based on parked cars in PLs. Taking the impact of the car's leaving behavior into consideration, we derive the expressions of outage probability in a two-hop cooperative communication and its link capacity. Finally, the numerical results show that the impact of a car's arriving time is greater than the impact of the duration the car has parked on outage probability.Comment: 7 pages, 7 figures, accepted by ICACT201

    A Normalization Model for Analyzing Multi-Tier Millimeter Wave Cellular Networks

    Full text link
    Based on the distinguishing features of multi-tier millimeter wave (mmWave) networks such as different transmit powers, different directivity gains from directional beamforming alignment and path loss laws for line-of-sight (LOS) and non-line-of-sight (NLOS) links, we introduce a normalization model to simplify the analysis of multi-tier mmWave cellular networks. The highlight of the model is that we convert a multi-tier mmWave cellular network into a single-tier mmWave network, where all the base stations (BSs) have the same normalized transmit power 1 and the densities of BSs scaled by LOS or NLOS scaling factors respectively follow piecewise constant function which has multiple demarcation points. On this basis, expressions for computing the coverage probability are obtained in general case with beamforming alignment errors and the special case with perfect beamforming alignment in the communication. According to corresponding numerical exploration, we conclude that the normalization model for multi-tier mmWave cellular networks fully meets requirements of network performance analysis, and it is simpler and clearer than the untransformed model. Besides, an unexpected but sensible finding is that there is an optimal beam width that maximizes coverage probability in the case with beamforming alignment errors.Comment: 7 pages, 4 figure

    Reconfigurable Intelligent Surface Enabled Joint Backscattering and Communication

    Full text link
    Reconfigurable intelligent surface (RIS) as an essential topic in the sixth-generation (6G) communications aims to enhance communication performance or mitigate undesired transmission. However, the controllability of each reflecting element on RIS also enables it to act as a passive backscatter device (BD) and transmit its information to reader devices. In this paper, we propose a RIS-enabled joint backscattering and communication (JBAC) system, where the backscatter communication coexists with the primary communication and occupies no extra spectrum. Specifically, the RIS modifies its reflecting pattern to act as a passive BD and reflect its own information back to the base station (BS) in the backscatter communication, while helping the primary communication from the BS to the users simultaneously. We further present an iterative active beamforming and reflecting pattern design to maximize the user average transmission rate of the primary communication and the goodput of the backscatter communication by solving the formulated multi-objective optimization problem (MOOP). Numerical results fully uncover the impacts of the number of reflecting elements and the reflecting patterns on the system performance, and demonstrate the effectiveness of the proposed scheme. Important practical implementation remarks have also been discussed.Comment: 11 pages, 8 figures, published to IEEE TV

    OCC-Selection-Based High-Efficient UWB Spatial Modulation System Over a Multipath Fading Channel

    No full text

    Modified Chirp Waveforms-Based OCC-UWB System With Multiple Interferences Suppression

    No full text

    Simulation Study on Temperature and Stress Fields in Mg-Gd-Y-Zn-Zr Alloy during CMT Additive Manufacturing Process

    No full text
    A new heat source combination, consisting of a uniform body heat source and a tilted double ellipsoidal heat source, has been developed for cold metal transfer (CMT) wire-arc additive manufacturing of Mg-Gd-Y-Zn-Zr alloy. Simulations were conducted to analyze the temperature field and stress distribution during the process. The optimal combination of feeding speed and welding speed was found to be 8 m/min and 8 mm/s, respectively, resulting in the lowest thermal accumulation and residual stress. Z-axis residual stress was identified as the main component of residual stress. Electron Backscatter Diffraction (EBSD) testing showed weak texture strength, and Kernel Average Misorientation (KAM) analysis revealed that the 1st layer had the highest residual stress, while the 11th layer had higher residual stress than the 6th layer. Microhardness in the 1st, 11th, and 6th layers varies due to residual stress impacts on dislocation density. Higher residual stress increases dislocation density, raising microhardness in components. The experimental results were highly consistent with the simulated results

    Fair Resource Allocation with QoS Guarantee in Secure Multiuser TDMA Networks

    No full text
    We investigate a secure multiuser time division multiple access (TDMA) system with statistical delay quality of service (QoS) guarantee in terms of secure effective capacity. An optimal resource allocation policy is proposed to minimize the β-fair cost function of the average user power under the individual QoS constraint, which also balances the energy efficiency and fairness among the users. First, convex optimization problems associated with the resource allocation policy are formulated. Then, a subgradient iteration algorithm based on the Lagrangian duality theory and the dual decomposition theory is employed to approach the global optimal solutions. Furthermore, considering the practical channel conditions, we develop a stochastic subgradient iteration algorithm which is capable of dynamically learning the intended wireless channels and acquiring the global optimal solution. It is shown that the proposed optimal resource allocation policy depends on the delay QoS requirement and the channel conditions. The optimal policy can save more power and achieve the balance of the energy efficiency and the fairness compared with the other resource allocation policies

    Energy-Efficient Resource Allocation for Secure Cognitive Radio Network With Delay QoS Guarantee

    No full text
    corecore