51 research outputs found

    Evidence for Exciton Crystals in a 2D Semiconductor Heterotrilayer

    Full text link
    Two-dimensional (2D) transition metal dichalcogenides (TMDC) and their moire interfaces have been demonstrated for correlated electron states, including Mott insulators and electron/hole crystals commensurate with moire superlattices. Here we present spectroscopic evidences for ordered bosons - interlayer exciton crystals in a WSe2/MoSe2/WSe2 trilayer, where the enhanced Coulomb interactions over those in heterobilayers have been predicted to result in exciton ordering. While the dipolar interlayer excitons in the heterobilayer may be ordered by the periodic moire traps, their mutual repulsion results in de-trapping at exciton density larger than 10^11 cm^-2 to form mobile exciton gases and further to electron-hole plasmas, both accompanied by broadening in photoluminescence (PL) peaks and large increases in mobility. In contrast, ordered interlayer excitons in the trilayer are characterized by negligible mobility and by sharper PL peaks persisting to nex larger than 10^12 cm^-2. We find that an optically dark state attributed to the predicted quadrupolar exciton crystal transitions to the bright dipolar excitons either with increasing nex or by an applied electric field. These ordered interlayer excitons may serve as models for the exploration of quantum phase transitions and quantum coherent phenomena.Comment: 16 pages, 4 figures, S

    Realization of multiple charge density waves in NbTe2 at the monolayer limit

    Full text link
    Abstract: Layered transition-metal dichalcogenides (TMDCs) down to the monolayer (ML) limit provide a fertile platform for exploring charge-density waves (CDWs). Though bulk NbTe2 is known to harbor a single axis 3*1 CDW coexisting with non-trivial quantum properties, the scenario in the ML limit is still experimentally unknown. In this study, we unveil the richness of the CDW phases in ML NbTe2, where not only the theoretically predicted 4*4 and 4*1 phases, but also two unexpected sqrt(28)*sqrt(28) and sqrt(19)*sqrt(19) phases, can be realized. For such a complex CDW system, we establish an exhaustive growth phase diagram via systematic efforts in the material synthesis and scanning tunneling microscope characterization. Moreover, we report that the energetically stable phase is the larger scale order (sqrt(19)*sqrt(19)), which is surprisingly in contradiction to the prior prediction (4*4). These findings are confirmed using two different kinetic pathways, i.e., direct growth at proper growth temperatures (T), and low-T growth followed by high-T annealing. Our results provide a comprehensive diagram of the "zoo" of CDW orders in ML 1T-NbTe2 for the first time and offer a new material platform for studying novel quantum phases in the 2D limit

    PTCDA molecular monolayer on Pb thin films: An unusual π-electron Kondo system and its interplay with a quantum-confined superconductor

    Get PDF
    The hybridization of magnetism and superconductivity has been an intriguing playground for correlated electron systems, hosting various novel physical phenomena. Usually, localized d- or f-electrons are central to magnetism. In this study, by placing a PTCDA (3,4,9,10-perylene tetracarboxylic dianhydride) molecular monolayer on ultra-thin Pb films, we built a hybrid magnetism/superconductivity (M/SC) system consisting of only sp electronic levels. The magnetic moments reside in the unpaired molecular orbital originating from interfacial charge-transfers. We reported distinctive tunneling spectroscopic features of such a Kondo screened pi-electron impurity lattice on a superconductor in the regime of TK>>delta suggesting the formation of a two-dimensional bound states band. Moreover, moiré superlattices with tunable twist angle and the quantum confinement in the ultra-thin Pb films provide easy and flexible implementations to tune the interplay between the Kondo physics and the superconductivity, which are rarely present in M/SC hybrid systems.Center for Dynamics and Control of Material

    Dissecting Interlayer Hole and Electron Transfer in Transition Metal Dichalcogenide Heterostructures via Two-Dimensional Electronic Spectroscopy

    Get PDF
    [Image: see text] Monolayer transition metal dichalcogenides (ML-TMDs) are two-dimensional semiconductors that stack to form heterostructures (HSs) with tailored electronic and optical properties. TMD/TMD-HSs like WS(2)/MoS(2) have type II band alignment and form long-lived (nanosecond) interlayer excitons following sub-100 fs interlayer charge transfer (ICT) from the photoexcited intralayer exciton. While many studies have demonstrated the ultrafast nature of ICT processes, we still lack a clear physical understanding of ICT due to the trade-off between temporal and frequency resolution in conventional transient absorption spectroscopy. Here, we perform two-dimensional electronic spectroscopy (2DES), a method with both high frequency and temporal resolution, on a large-area WS(2)/MoS(2) HS where we unambiguously time resolve both interlayer hole and electron transfer with 34 ± 14 and 69 ± 9 fs time constants, respectively. We simultaneously resolve additional optoelectronic processes including band gap renormalization and intralayer exciton coupling. This study demonstrates the advantages of 2DES in comprehensively resolving ultrafast processes in TMD-HS, including ICT

    SAR Time Series Despeckling Based on Additive Signal Component Decomposition in Logarithm Domain

    No full text
    With the substantial improvement of Synthetic Aperture Radar (SAR) regarding swath width and spatial and temporal resolutions, a time series obtained by registering SAR images acquired at different times can provide more accurate information on the dynamic changes in the observed areas. However, inherent speckle noise and outliers along the temporal dimension in the time series pose serious challenges for subsequent interpretation tasks. Although existing state-of-the-art methods can effectively suppress the speckle noise in a SAR time series, outliers along the temporal dimension will interfere with the denoising results. To better solve this problem, this paper proposes an additive signal decomposition method in the logarithm domain that can suppress the speckle noise and separate stable data and outliers along the temporal dimension in a time series, thus eliminating the impact of outliers on the denoising results. When the simulated data are disturbed by outliers, the proposed method can achieve an approximately 3 dB improvement in the Peak Signal-to-Noise Ratio (PSNR) compared to the other state-of-the-art methods. On Sentinel-1 data, the proposed method robustly suppresses the speckle noise in a time series, and the obtained outliers along the temporal dimension provide reference data for subsequent interpretation tasks

    Mechanism of subsurface microstructural fatigue crack initiation during high and very-high cycle fatigue of advanced bainitic steels

    No full text
    Advanced bainitic steels with the multiphase structure of bainitic ferrite, retained austenite and marten-site exhibit distinctive fatigue crack initiation behavior during high cycle fatigue/very high cycle fatigue (HCF/VHCF) regimes. The subsurface microstructural fatigue crack initiation, referred to as "non-inclusion induced crack initiation, NIICI", is a leading mode of failure of bainitic steels within the HCF/VHCF regimes. In this regard, there is currently a missing gap in the knowledge with respect to the cyclic response of multiphase structure during VHCF failure and the underlying mechanisms of fatigue crack initiation during VHCF. To address this aspect, we have developed a novel approach that explicitly identi-fies the knowledge gap through an examination of subsurface crack initiation and interaction with the lo -cal microstructure. This was accomplished by uniquely combining electron microscopy, three-dimensional confocal microscopy, focused ion beam, and transmission Kikuchi diffraction. Interestingly, the study indi-cated that there are multiple micro-mechanisms responsible for the NIICI failure of bainitic steels, includ-ing two scenarios of transgranular-crack-assisted NIICI and two scenarios of intergranular-crack-assisted NIICI, which resulted in the different distribution of fine grains in the crack initiation area. The fine grains were formed through fragmentation of bainitic ferrite lath caused by localized plastic deformation or via local continuous dynamic recrystallization because of repeated interaction between slip bands and prior austenite grain boundaries. The formation of fine grains assisted the advancement of small cracks. An-other important aspect discussed is the role of retained austenite (RA) during cyclic loading, on crack ini-tiation and propagation in terms of the morphology, distribution and stability of RA, which determined the development of localized cyclic plastic deformation in multiphase structure. (c) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology
    • …
    corecore