7 research outputs found

    A scalable mass customisation design process for 3D-printed respirator mask to combat COVID-19

    Get PDF
    Purpose A three-dimensional (3D) printed custom-fit respirator mask has been proposed as a promising solution to alleviate mask-related injuries and supply shortages during COVID-19. However, creating a custom-fit computer-aided design (CAD) model for each mask is currently a manual process and thereby not scalable for a pandemic crisis. This paper aims to develop a novel design process to reduce overall design cost and time, thus enabling the mass customisation of 3D printed respirator masks. Design/methodology/approach Four data acquisition methods were used to collect 3D facial data from five volunteers. Geometric accuracy, equipment cost and acquisition time of each method were evaluated to identify the most suitable acquisition method for a pandemic crisis. Subsequently, a novel three-step design process was developed and scripted to generate respirator mask CAD models for each volunteer. Computational time was evaluated and geometric accuracy of the masks was evaluated via one-sided Hausdorff distance. Findings Respirator masks were successfully generated from all meshes, taking <2 min/mask for meshes of 50,000∼100,000 vertices and <4 min for meshes of ∼500,000 vertices. The average geometric accuracy of the mask ranged from 0.3 mm to 1.35 mm, depending on the acquisition method. The average geometric accuracy of mesh obtained from different acquisition methods ranged from 0.56 mm to 1.35 mm. A smartphone with a depth sensor was found to be the most appropriate acquisition method. Originality/value A novel and scalable mass customisation design process was presented, which can automatically generate CAD models of custom-fit respirator masks in a few minutes from a raw 3D facial mesh. Four acquisition methods, including the use of a statistical shape model, a smartphone with a depth sensor, a light stage and a structured light scanner were compared; one method was recommended for use in a pandemic crisis considering equipment cost, acquisition time and geometric accuracy

    Point prevalence survey of antimicrobial use and resistance during the COVID-19 era among hospitals in Saudi Arabia and the implications

    Get PDF
    The inappropriate prescribing of antimicrobials increases antimicrobial resistance (AMR), which poses an appreciable threat to public health, increasing morbidity and mortality. Inappropriate antimicrobial prescribing includes their prescribing in patients hospitalized with COVID-19, despite limited evidence of bacterial infections or coinfections. Knowledge of current antimicrobial utilization in Saudi Arabia is currently limited. Consequently, the objective of this study was to document current antimicrobial prescribing patterns among Saudi hospitals during the COVID-19 pandemic. This study included patients with or without COVID-19 who were admitted to five hospitals in Makkah, Saudi Arabia. Data were gathered using the Global PPS methodology and analyzed using descriptive statistics. Out of 897 hospitalized patients, 518 were treated with antibiotics (57.7%), with an average of 1.9 antibiotics per patient. There were 174 culture reports collected, representing 36.5% of all cases. The most common indication for antibiotics use was community-acquired infections, accounting for 61.4% of all cases. ‘Watch’ antibiotics were the most commonly prescribed antibiotics, with the cephalosporins and carbapenems representing 38.7% of all antibiotics prescribed, followed by the penicillins (23.2%). Notably, Piperacillin/Tazobactam and Azithromycin were prescribed at relatively higher rates for COVID-19 patients. These findings highlight the need for continuous efforts to optimize the rational use of antibiotics through instigating appropriate antimicrobial stewardship programs in hospitals and, as a result, reduce AMR in the country

    The role of microstructure on wear mechanisms and anisotropy of additively manufactured 316L stainless steel in dry sliding

    No full text
    Wear control, which relies on understanding the mechanisms of wear, is crucial in preserving the life of mechanical components and reducing costs. Additive manufacturing (AM) techniques can produce parts with tailored microstructure, however, little has been done to understand how this impacts the mechanisms of wear. Here we study the impact of initial grain arrangement and crystal orientation on the wear mechanisms of austenitic stainless steel (SS) in dry sliding contact. Specifically, the anisotropic sliding wear behavior of as-built, AM-ed 316L SS is compared against annealed, wire-drawn counterparts. We describe, in-detail, how the sliding wear mechanisms of delamination, abrasion, oxidation, and plastic deformation are attributed to the initial surface microstructure under different loading conditions using a number of techniques. This new understanding sheds light on how different AM-induced microstructures affect wear, thereby allowing for better utilization of this technology to develop components with enhanced wear properties

    Toward mass customization through additive manufacturing: an automated design pipeline for respiratory protective equipment validated against 205 faces

    Get PDF
    Respiratory protective equipment (RPE) is traditionally designed through anthropometric sizing to enable mass production. However, this can lead to long-standing problems of low-compliance, severe skin trauma, and higher fit test failure rates among certain demographic groups, particularly females and non-white ethnic groups. Additive manufacturing could be a viable solution to produce custom-fitted RPE, but the manual design process is time-consuming, cost-prohibitive and unscalable for mass customization. This paper proposes an automated design pipeline which generates the computer-aided design models of custom-fit RPE from unprocessed three-dimensional (3D) facial scans. The pipeline successfully processed 197 of 205 facial scans with <2 min/scan. The average and maximum geometric error of the mask were 0.62 mm and 2.03 mm, respectively. No statistically significant differences in mask fit were found between male and female, Asian and White, White and Others, Healthy and Overweight, Overweight and Obese, Middle age, and Senior groups

    In situ observation of anisotropic tribological contact evolution in 316L steel formed by selective laser melting

    No full text
    A consensus on the tribological performance of components by additive-versus conventional manufacturing has not been achieved; mainly because the tribological test set-ups thus far were not suited for investigating the underlying microstructure's influence on the tribological properties. As a result, utilization of additive manufacturing techniques, such as selective laser melting (SLM), for tribological applications remains questionable. Here, we investigate the anisotropic tribological response of SLM 316L stainless steel via in situ SEM reciprocating micro-scratch testing to highlight the microstructure's role. As-built 316L SLM specimens were compared against annealed wire-drawn 316L. We found that: (i) microgeometric conformity was the main driver for achieving steady-state friction, (ii) the anisotropic friction of the additively manufactured components is limited to the break-in and is caused by the lack of conformity, (iii) the cohesive bonds, whose strength is proportional to frictional forces, are stronger in the additively manufactured specimens likely due to the dislocation-dense, cellular structures, (iv) low Taylor-factor grains with large dimension stimulate microcutting in the form of long, thin sheets with serrated edges. These findings uncover some microstructurally driven tribological complexities when comparing additive to conventional manufacturing

    The potential of Spirulina platensis to substitute antibiotics in Japanese quail diets: impacts on growth, carcass traits, antioxidant status, blood biochemical parameters, and cecal microorganisms

    No full text
    ABSTRACT: The development of antibiotic-resistant microorganisms prompted the investigation of possible antibiotic substitutes. As a result, the purpose of the current study is to assess the effect of dietary Spirulina platensis extract as an antibiotic alternative on Japanese quail (Coturnix japonica) growth, antioxidant status, blood parameters, and cecal microorganisms. There was a total of 150 Japanese quails used in this study, divided equally among 5 experimental groups (10 birds per group with 3 replicates): group 1 (G1) received a basal diet without any S. platensis extract, group 2 (G2) received a basal diet supplemented with 1 mL S. platensis extract/kg, group 3 (G3) received a basal diet supplemented with 2 mL S. platensis extract/kg, group 4 (G4) received a basal diet supplemented with 3 mL S. platensis extract/kg, and group 5 (G5) received a basal diet supplemented with 4 mL S. platensis extract/kg from d 7 until d 35. The results showed that compared to the control birds in G1, Japanese quail supplemented with 4 mL of S. platensis extract/kg of diet (G5) had significantly better live body weight, body weight gain, feed intake, feed conversion ratio, digestive enzymes, blood parameters, liver and kidney functions, lipid profile, antioxidant profile, immunological parameters, and cecal microorganism's count. There were no significant changes in the percentage of carcasses, liver, and total giblets among all the 5 groups. Only gizzard percentage showed a significant increase in G2 compared to birds in G1. In addition, intestinal pH showed a significant drop in G2 and G5 compared to birds in G1. After cooking the quail meat, the juiciness and tenderness increased as S. platensis extract levels increased, whereas aroma and taste declined slightly as S. platensis extract levels increased. Furthermore, when a high concentration of S. platensis extract was used, the lightness of the meat reduced while its redness and yellowness increased. The disk diffusion assay showed that S. platensis extract had significant antibacterial activity against Staphylococcus aureus, Listeria monocytogenes, Campylobacter jejuni, and Salmonella typhi, with inhibition zones ranging from 16 to 42 mm. This activity may be attributable to the volatile chemicals in S. platensis extract, of which Geosmin and 2-methylisoborneol are the primary components. In the diet of Japanese quails, it is possible to draw the conclusion that the extract of S. platensis can be utilized as a feed additive and as an alternative to antibiotics

    The role of turmeric and black pepper oil nanoemulsion in attenuating cytokine storm triggered by duck hepatitis A virus type I (DHAV-I)-induced infection in ducklings

    No full text
    ABSTRACT: The cytokine storm induced by duck hepatitis A virus type 1 (DHAV-1) infection significantly contributes to severe, rapid deaths and economic losses in the duck industry in Egypt. This study aimed to investigate the potential inhibitory effect of a nanoemulsion containing turmeric and black pepper oil on the immune response and pathogenesis of DHAV-1 in ducklings. A total of 105 ducklings from nonvaccinated breeders were divided into 5 experimental groups, each comprising 21 birds. The negative control group (G1) remained noninfected with DHAV-1 and nontreated with nanoemulsion, while the positive control group (G2) was infected with DHAV-1 but not treated with nanoemulsion. The other 2 groups (G3, the supplemented group which was noninfected with DHAV-1), and group 4 (the prophylactic group G4) which was infected with DHAV-1, both received nanoemulsion throughout the experiment. Group 5 (G5, therapeutic group), on the other hand, which was infected with DHAV-1 received nanoemulsion only from the onset of clinical signs. At 5 days old, the ducklings in positive control (G2), prophylactic (G4), and therapeutic group (G5) were infected with DHAV-1. All the ducklings in the infected groups exhibited depression, anorexia, and opisthotonos, and their livers displayed various degrees of ecchymotic hemorrhage, liver enlargement, and microscopic pathological lesions. Notably, the positive control group (G2) experienced the most severe and pronounced effects compared to the other infected groups treated with the nanoemulsion. Meanwhile, the viral RNA loads were lower in the liver tissues of the infected ducklings treated with the nanoemulsion (G4, and G5) compared to the positive control group G2. Additionally, the nanoemulsion effectively modulated proinflammatory cytokine expression, antioxidant enzymes, liver enzymes, and lipid profile of treated ducklings. In conclusion, the turmeric and black pepper oil nanoemulsion has the potential to be a therapeutic agent for regulating and modulating the immune response, decreasing DHAV-1-induced cytokine storms, and minimizing mortality and economic losses in the duck business. More research is needed to understand how turmeric and black pepper oil nanoemulsion alleviates DHVA-1-induced cytokine storms and lowers duckling mortality
    corecore