69 research outputs found

    Futuristic Air Compressor System Design and Operation by Using Artificial Intelligence

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The compressed air system is widely used throughout the industry. Air compressors are one of the most costly systems to operate in industrial plants in terms of energy consumption. Therefore, it becomes one of the primary targets when it comes to electrical energy and load management practices. Load forecasting is the first step in developing energy management systems both on the supply and user side. A comprehensive literature review has been conducted, and there was a need to study if predicting compressed air system’s load is a possibility. System’s load profile will be valuable to the industry practitioners as well as related software providers in developing better practice and tools for load management and look-ahead scheduling programs. Feed forward neural networks (FFNN) and long short-term memory (LSTM) techniques have been used to perform 15 minutes ahead prediction. Three cases of different sizes and control methods have been studied. The results proved the possibility of the forecast. In this study two control methods have been developed by using the prediction. The first control method is designed for variable speed driven air compressors. The goal was to decrease the maximum electrical load for the air compressor by using the system's full operational capabilities and the air receiver tank. This goal has been achieved by optimizing the system operation and developing a practical control method. The results can be used to decrease the maximum electrical load consumed by the system as well as assuring the sufficient air for the users during the peak compressed air demand by users. This method can also prevent backup or secondary systems from running during the peak compressed air demand which can result in more energy and demand savings. Load management plays a pivotal role and developing maximum load reduction methods by users can result in more sustainability as well as the cost reduction for developing sustainable energy production sources. The last part of this research is concentrated on reducing the energy consumed by load/unload controlled air compressors. Two novel control methods have been introduced. One method uses the prediction as input, and the other one doesn't require prediction. Both of them resulted in energy consumption reduction by increasing the off period with the same compressed air output or in other words without sacrificing the required compressed air needed for production.2019-12-0

    Heterogeneous catalytic ozonation of 2, 4-dinitrophenol in aqueous solution by magnetic carbonaceous nanocomposite: catalytic activity and mechanism

    Get PDF
    Herein, the catalytic properties of a carbonaceous nanocomposite in the catalytic ozonation process (COP) of 2, 4-dinitrophenol (2, 4-DNP) were investigated and the results were compared with those obtained from single ozonation process (SOP). Magnetic carbonaceous nanocomposite, as a novel catalyst, was applied to optimize the condition for the removal of 2, 4-DNP in the COP, and the influential parameters such as pH, catalyst dosage, addition of radical scavengers, and durability were all evaluated. The results showed that the degradation efficiency of 2, 4-DNP and COD in the COP (98.2, 92) was higher compared to the SOP (75, 61) and the highest catalytic potential was achieved at an optimal pH of 6. The first-order modeling demonstrated that the reactions were dependent on the concentration of the catalyst, with the kinetic constants varying from 0.022 (1/min) in the SOP to 1.377 (1/min) in the COP at the catalyst dosage of 4 g/L and the optimum concentration of catalyst (2 g/L). The addition of radical scavenger noticeably diminished the removal efficiency of 2, 4-DNP in the SOP from 75 down to 54, while the corresponding values for the COP dropped from 98.2 to 93. Furthermore, a negligible reduction in the catalytic properties of the catalyst was observed (~5) after five-time reuse. The results also revealed that the applied method is effectively suitable for the removal of 2, 4-DNP contaminant from industrial wastewaters. © 2015 Balaban Desalination Publications. All rights reserved

    Comparative Investigation of Health Quality of Air in Tehran, Isfahan and Shiraz Metropolises in 2011-2012

    Get PDF
    Background and Aims: Air pollution causes wide spectrum acute and chronic effects of health from slight physiological disorders to death from cardiovascular and respiratory diseases. In order to set the control programs, air pollution monitoring and determination of air quality are necessary. The objective of this study was to compare health quality of air in Tehran, Isfahan and Shiraz cities in 2011- 2012.Materials and Methods: This Study was a descriptive–analytic study. The moment concentrations of Tehran,Isfahan and Shiraz air pollutants were gathered through referring to the environmental protection agency.Then, Air Quality Index (AQI) was calculated based on the criteria pollutants’ levels (CO, NO2, SO2, PM10,PM2.5 and O3) for three cities through linear interpolation and was classified into describing classes accordingto tables of National Ambient Air Quality Standards. Data analysis was performed with Excel and SPSS software using One-Way ANOVA test.Results: The results showed that the AQI in Tehran, Isfahan and Shiraz was higher than Iran’s environmental protection agency standards (AQI>100) in 341, 323 and 85 days, respectively. Furthermore, particulate matter (PM10) has been the critical pollutant in three cities for most days of the year. One-Way ANOVA test between AQI mean of the three cities showed a significant difference.Conclusion: The air quality of the three cities was unhealthy in 2011-2012 and the situation of Tehran andIsfahan air, however, was in the “bad situation”.Key words: Air pollutants, Air quality index, Pollution standard index, Responsible pollutan

    Catalytic ozonation of azo dye Reactive Red 120 in the presence of MgO nanoparticles

    Get PDF
    Background and Aims: Dyes are widely used in different industries and consequently are disposed through different industrial effluents into the environment. Chronic and/or acute effects of the chemicals on microorganisms have been documented. Dyes may absorb and reflect the entering sun lights into the water and thereby decrease the algal photosynthesis. The later in turn can affect the food chain seriously. The aim of this study was, therefore, to use MgO nanoparticles as catalyst in heterogenic catalytic ozonation process (COP) for reactive red 120 dye removal (decolorization) from synthetic wastewater.Materials and Methods: MgO nanoparticles were produced by sol-gel method. The influences of several operational parameters including solution pH, reaction time, MgO dosage and initial dye concentration on removal (decolorization) efficiency were evaluated.Results: The optimum pH and MgO dosage for COP were determined as 10 and 3 g/L, respectively. Decolorization of 500 mg/L of dye was almost complete after 12 min under achieved optimum conditions. MgO nanocrystals markedly affected the COP and enhanced the dye removal efficiency by approximately 49% compared with the sole ozonation process.Conclusion: Higher O3 decomposition in presence a small amounts of catalyst and alkaline pH increases the radical production which in turn improves the decolorization efficiency. Increasing the initial concentration of dye deteriorated the removal efficiency; however, this can be compensated by increasing the ozonation rate.Key words: Catalytic Ozonation, MgO Nanoparticles, Reactive Red 120 dye (RR120)

    Evaluation of cardiovascular and respiratory mortality attributed to atmospheric SO2 and CO using AirQ model

    Get PDF
    Background: Air pollutants have multiple adverse effects on human health. In this study, the health effects of exposure to carbon monoxide (CO) and SO2 in the air of 6 Iranian metropolises in 2011-2012 were examined. Methods: Raw data was collected from the Iranian Department of Environment and the Iran Meteorological Organization. After validation, the required statistical indices were calculated through programming and modifying temperature and pressure in Excel software. The output of Excel was given to the AirQ model, and the results were presented as the cases of death. Results: The annual mean concentrations of SO2 were 2.45, 1.55, 0.6, 0.55, 1.05, and 3.8 times higher than the guidelines of the World Health Organization (WHO) (20 ÎĽg/m3) in Tehran, Mashhad, Isfahan, Shiraz, Tabriz, and Urmia, respectively. The concentrations of CO did not exceed the standard limit in any of the studied cities. The cumulative numbers of total deaths attributed to SO2 were 744, 122, 132, 44, 37, and 107 in Tehran, Mashhad, Isfahan, Shiraz, Tabriz, and Urmia, respectively. The highest mortality rate was found in Urmia at 2.9% followed by Tehran at 1.52%; the lowest rate of 0.46% was found in Tabriz. Conclusion: The results show that of the 6 metropolises, the highest CO mortality rate of about 2.15% belonged to Isfahan followed by Arak with about 1.38%, and the lowest rate of 0.68% belonged to Mashhad. Because of the growing trend of air pollution and its mortality rate and adverse effects, practical solutions for the control and reduction of air pollution in Iranian metropolises are necessary

    Estimation of Short-term Mortality and Morbidity Attributed to Fine Particulate Matter in the Ambient Air of Eight Iranian Cities

    Get PDF
    Amongst the various pollutants in the air, particulate matters (PM) have significant adverse effects on human health. The current research is based on existing epidemiological literature for quantitative estimation of the current health impacts related to particulate matters in some selected principal Iranian megacities. In order to find the influence of air pollution on human health, we used the AirQ software tool presented by the World Health Organization (WHO) European Centre for Environment and Health (ECEH), Bilthoven Division. The adverse health outcomes used in the study consist of mortality (all causes excluding accidental causes), due to cardiovascular (CVD) and respiratory (RES) diseases, and morbidity (hospital admissions for CVD and RES causes). For this purpose, hourly PM10 data were taken from the monitoring stations in eight study cities during 2011 and 2012. Results showed annual average concentrations of PM10 and PM2.5 in all megacities exceeded national and international air quality standards and even reached levels nearly ten times higher than WHO guidelines in some cities. Considering the short-term effects, PM2.5 had the maximum effects on the health of the 19,048,000 residents of the eight Iranian cities, causing total mortality of 5,670 out of 87,907 during a one-year time-period. Hence, reducing concentrations and controlling air pollution, particularly the presence of particles, is urgent in these metropolises

    Systematic energy and exergy efficiency study and comparison between direct fired and indirect fired heating systems

    No full text
    The variability in energy demand provides one of the greatest challenges utilities face in supporting the electrical grid. Utilities meet peak demand loads through more expensive generation methods and as a result, utilities will often charge large energy users based on their peak electrical demand as well as their overall energy consumption. The peak demand charge incurred can represent a signi cant portion of the total utility bill, thus taking measures to manage electrical demand can result in substantial cost savings. The goal of this research is to analyze the potential bene ts of utilizing a small-scale compressed air energy storage system as a form of demand management for an industrial manufacturer. A thermodynamic model has been developed to evaluate the feasibility of implementing a compressed air energy storage system based on the current energy and compressed air demands of the facility. The proposed system provides some of the facilities compressed air demand, produce energy to reduce the peak demand charge incurred and produce hot water which could be utilized for a variety of industrial processes. Finally, the model is validated with data from a nearby industrial manufacturing plant and the results are analyzed and discussed

    Systematic energy and exergy efficiency study and comparison between direct fired and indirect fired heating systems

    No full text
    The variability in energy demand provides one of the greatest challenges utilities face in supporting the electrical grid. Utilities meet peak demand loads through more expensive generation methods and as a result, utilities will often charge large energy users based on their peak electrical demand as well as their overall energy consumption. The peak demand charge incurred can represent a signi cant portion of the total utility bill, thus taking measures to manage electrical demand can result in substantial cost savings. The goal of this research is to analyze the potential bene ts of utilizing a small-scale compressed air energy storage system as a form of demand management for an industrial manufacturer. A thermodynamic model has been developed to evaluate the feasibility of implementing a compressed air energy storage system based on the current energy and compressed air demands of the facility. The proposed system provides some of the facilities compressed air demand, produce energy to reduce the peak demand charge incurred and produce hot water which could be utilized for a variety of industrial processes. Finally, the model is validated with data from a nearby industrial manufacturing plant and the results are analyzed and discussed
    • …
    corecore