39 research outputs found
How Much Temporal Long-Term Context is Needed for Action Segmentation?
Modeling long-term context in videos is crucial for many fine-grained tasks
including temporal action segmentation. An interesting question that is still
open is how much long-term temporal context is needed for optimal performance.
While transformers can model the long-term context of a video, this becomes
computationally prohibitive for long videos. Recent works on temporal action
segmentation thus combine temporal convolutional networks with self-attentions
that are computed only for a local temporal window. While these approaches show
good results, their performance is limited by their inability to capture the
full context of a video. In this work, we try to answer how much long-term
temporal context is required for temporal action segmentation by introducing a
transformer-based model that leverages sparse attention to capture the full
context of a video. We compare our model with the current state of the art on
three datasets for temporal action segmentation, namely 50Salads, Breakfast,
and Assembly101. Our experiments show that modeling the full context of a video
is necessary to obtain the best performance for temporal action segmentation.Comment: ICCV 202
Discover hidden splicing variations by mapping personal transcriptomes to personal genomes.
RNA-seq has become a popular technology for studying genetic variation of pre-mRNA alternative splicing. Commonly used RNA-seq aligners rely on the consensus splice site dinucleotide motifs to map reads across splice junctions. Consequently, genomic variants that create novel splice site dinucleotides may produce splice junction RNA-seq reads that cannot be mapped to the reference genome. We developed and evaluated an approach to identify 'hidden' splicing variations in personal transcriptomes, by mapping personal RNA-seq data to personal genomes. Computational analysis and experimental validation indicate that this approach identifies personal specific splice junctions at a low false positive rate. Applying this approach to an RNA-seq data set of 75 individuals, we identified 506 personal specific splice junctions, among which 437 were novel splice junctions not documented in current human transcript annotations. 94 splice junctions had splice site SNPs associated with GWAS signals of human traits and diseases. These involve genes whose splicing variations have been implicated in diseases (such as OAS1), as well as novel associations between alternative splicing and diseases (such as ICA1). Collectively, our work demonstrates that the personal genome approach to RNA-seq read alignment enables the discovery of a large but previously unknown catalog of splicing variations in human populations
Quick Review: Uncertainty of Optimization Techniques in Petroleum Reservoir Management
The notable increase in petroleum demand, together with a decline in discovery rates, has highlighted the desire for efficient production of existing oil wells worldwide. Mainly, the productivity of the existing large oil fields makes us consider the principles of managing reservoirs to make the most of extraction. At the same time, many different uncertainties in the course of the developing oil field, including geological, operational, and economic uncertainties, have a detrimental impact on the reservoir\u27s effective production, which is why dealing with uncertainty is crucial for maximizing output. There is a broad variety of studies on managing oil reservoirs under uncertainty information in the literature. In this study a short review of earlier works has been done on optimization strategies and management of uncertainty in reservoir production
Designing an Integrated Model of Oil and Gas Management with a SWOT Approach: The Case of NIOC
In the recent years, the growing demand for energy on the one hand and the reduction of conventional hydrocarbon reserves on the other hand have made the proper extraction of oil and gas reserves, i.e. reservoir management issues, more important and hence proper management of these reserves is inevitable. Although renewable energies currently provide the bulk of the worldâs energy needs, hydrocarbon fuels remain the main source of energy until 2035.Despite the growing importance of the Integrated Reservoir Management Model (IRMI), as a rational solution to maximize economic production from oil and gas reservoirs, a comprehensive model that can cover all reservoir management modules has not yet been proposed. In this paper, by examining the current condition of reservoir management in one of the subsidiaries of the National Iranian Oil company and analyzing the obtained results, we offer some solutions to improve the condition and finally, we present a comprehensive model for reservoir management in this company
αCP binding to a cytosine-rich subset of polypyrimidine tracts drives a novel pathway of cassette exon splicing in the mammalian transcriptome.
Alternative splicing (AS) is a robust generator of mammalian transcriptome complexity. Splice site specification is controlled by interactions of cis-acting determinants on a transcript with specific RNA binding proteins. These interactions are frequently localized to the intronic U-rich polypyrimidine tracts (PPT) located 5' to the majority of splice acceptor junctions. αCPs (also referred to as polyC-binding proteins (PCBPs) and hnRNPEs) comprise a subset of KH-domain proteins with high affinity and specificity for C-rich polypyrimidine motifs. Here, we demonstrate that αCPs promote the splicing of a defined subset of cassette exons via binding to a C-rich subset of polypyrimidine tracts located 5' to the αCP-enhanced exonic segments. This enhancement of splice acceptor activity is linked to interactions of αCPs with the U2 snRNP complex and may be mediated by cooperative interactions with the canonical polypyrimidine tract binding protein, U2AF65. Analysis of αCP-targeted exons predicts a substantial impact on fundamental cell functions. These findings lead us to conclude that the αCPs play a direct and global role in modulating the splicing activity and inclusion of an array of cassette exons, thus driving a novel pathway of splice site regulation within the mammalian transcriptome
FastSurfer-HypVINN: Automated sub-segmentation of the hypothalamus and adjacent structures on high-resolutional brain MRI
The hypothalamus plays a crucial role in the regulation of a broad range of
physiological, behavioural, and cognitive functions. However, despite its
importance, only a few small-scale neuroimaging studies have investigated its
substructures, likely due to the lack of fully automated segmentation tools to
address scalability and reproducibility issues of manual segmentation. While
the only previous attempt to automatically sub-segment the hypothalamus with a
neural network showed promise for 1.0 mm isotropic T1-weighted (T1w) MRI, there
is a need for an automated tool to sub-segment also high-resolutional (HiRes)
MR scans, as they are becoming widely available, and include structural detail
also from multi-modal MRI. We, therefore, introduce a novel, fast, and fully
automated deep learning method named HypVINN for sub-segmentation of the
hypothalamus and adjacent structures on 0.8 mm isotropic T1w and T2w brain MR
images that is robust to missing modalities. We extensively validate our model
with respect to segmentation accuracy, generalizability, in-session test-retest
reliability, and sensitivity to replicate hypothalamic volume effects (e.g.
sex-differences). The proposed method exhibits high segmentation performance
both for standalone T1w images as well as for T1w/T2w image pairs. Even with
the additional capability to accept flexible inputs, our model matches or
exceeds the performance of state-of-the-art methods with fixed inputs. We,
further, demonstrate the generalizability of our method in experiments with 1.0
mm MR scans from both the Rhineland Study and the UK Biobank. Finally, HypVINN
can perform the segmentation in less than a minute (GPU) and will be available
in the open source FastSurfer neuroimaging software suite, offering a
validated, efficient, and scalable solution for evaluating imaging-derived
phenotypes of the hypothalamus.Comment: Submitted to Imaging Neuroscienc
Transcriptional regulatory control of mammalian nephron progenitors revealed by multi-factor cistromic analysis and genetic studies
Nephron progenitor number determines nephron endowment; a reduced nephron count is linked to the onset of kidney disease. Several transcriptional regulators including Six2, Wt1, Osr1, Sall1, Eya1, Pax2, and Hox11 paralogues are required for specification and/or maintenance of nephron progenitors. However, little is known about the regulatory intersection of these players. Here, we have mapped nephron progenitor-specific transcriptional networks of Six2, Hoxd11, Osr1, and Wt1. We identified 373 multi-factor associated âregulatory hotspotsâ around genes closely associated with progenitor programs. To examine their functional significance, we deleted âhotspotâ enhancer elements for Six2 and Wnt4. Removal of the distal enhancer for Six2 leads to a ~40% reduction in Six2 expression. When combined with a Six2 null allele, progeny display a premature depletion of nephron progenitors. Loss of the Wnt4 enhancer led to a significant reduction of Wnt4 expression in renal vesicles and a mildly hypoplastic kidney, a phenotype also enhanced in combination with a Wnt4 null mutation. To explore the regulatory landscape that supports proper target gene expression, we performed CTCF ChIP-seq to identify insulator-boundary regions. One such putative boundary lies between the Six2 and Six3 loci. Evidence for the functional significance of this boundary was obtained by deep sequencing of the radiation-induced Brachyrrhine (Br) mutant allele. We identified an inversion of the Six2/Six3 locus around the CTCF-bound boundary, removing Six2 from its distal enhancer regulation, but placed next to Six3 enhancer elements which support ectopic Six2 expression in the lens where Six3 is normally expressed. Six3 is now predicted to fall under control of the Six2 distal enhancer. Consistent with this view, we observed ectopic Six3 in nephron progenitors. 4C-seq supports the model for Six2 distal enhancer interactions in wild-type and Br/+ mouse kidneys. Together, these data expand our view of the regulatory genome and regulatory landscape underpinning mammalian nephrogenesis
Transcriptional regulatory control of mammalian nephron progenitors revealed by multi-factor cistromic analysis and genetic studies.
Nephron progenitor number determines nephron endowment; a reduced nephron count is linked to the onset of kidney disease. Several transcriptional regulators including Six2, Wt1, Osr1, Sall1, Eya1, Pax2, and Hox11 paralogues are required for specification and/or maintenance of nephron progenitors. However, little is known about the regulatory intersection of these players. Here, we have mapped nephron progenitor-specific transcriptional networks of Six2, Hoxd11, Osr1, and Wt1. We identified 373 multi-factor associated \u27regulatory hotspots\u27 around genes closely associated with progenitor programs. To examine their functional significance, we deleted \u27hotspot\u27 enhancer elements for Six2 and Wnt4. Removal of the distal enhancer for Six2 leads to a ~40% reduction in Six2 expression. When combined with a Six2 null allele, progeny display a premature depletion of nephron progenitors. Loss of the Wnt4 enhancer led to a significant reduction of Wnt4 expression in renal vesicles and a mildly hypoplastic kidney, a phenotype also enhanced in combination with a Wnt4 null mutation. To explore the regulatory landscape that supports proper target gene expression, we performed CTCF ChIP-seq to identify insulator-boundary regions. One such putative boundary lies between the Six2 and Six3 loci. Evidence for the functional significance of this boundary was obtained by deep sequencing of the radiation-induced Brachyrrhine (Br) mutant allele. We identified an inversion of the Six2/Six3 locus around the CTCF-bound boundary, removing Six2 from its distal enhancer regulation, but placed next to Six3 enhancer elements which support ectopic Six2 expression in the lens where Six3 is normally expressed. Six3 is now predicted to fall under control of the Six2 distal enhancer. Consistent with this view, we observed ectopic Six3 in nephron progenitors. 4C-seq supports the model for Six2 distal enhancer interactions in wild-type and Br/+ mouse kidneys. Together, these data expand our view of the regulatory genome and regulatory landscape underpinning mammalian nephrogenesis
Site identification in high-throughput RNA-protein interaction data
Motivation: Post-transcriptional and co-transcriptional regulation is a crucial link between genotype and phenotype. The central players are the RNA-binding proteins, and experimental technologies [such as cross-linking with immunoprecipitation-(CLIP-) and RIP-seq] for probing their activities have advanced rapidly over the course of the past decade. Statistically robust, flexible computational methods for binding site identification from high-throughput immunoprecipitation assays are largely lacking however.Results: We introduce a method for site identification which provides four key advantages over previous methods: (i) it can be applied on all variations of CLIP and RIP-seq technologies, (ii) it accurately models the underlying read-count distributions, (iii) it allows external covariates, such as transcript abundance (which we demonstrate is highly correlated with read count) to inform the site identification process and (iv) it allows for direct comparison of site usage across cell types or conditions. © The Author 2012. Published by Oxford University Press. All rights reserved
Frequency and clinical patterns of stroke in Iran - Systematic and critical review
<p>Abstract</p> <p>Background</p> <p>Cerebrovascular disease is the second commonest cause of death, and over a third of stroke deaths occur in developing countries. To fulfil the current gap on data, this systematic review is focused on the frequency of stroke, risk factors, stroke types and mortality in Iran.</p> <p>Methods</p> <p>Thirteen relevant articles were identified by keyword searching of PubMed, Iranmedex, Iranian University index Libraries and the official national data on burden of diseases.</p> <p>Results</p> <p>The publication dates ranged from 1990 to 2008. The annual stroke incidence of various ages ranged from 23 to 103 per 100,000 population. This is comparable to the figures from Arab Countries, higher than sub-Saharan Africa, but lower than developed countries, India, the Caribbean, Latin America, and China. Similarly to other countries, ischaemic stroke was the commonest subtype. Likewise, the most common related risk factor is hypertension in adults, but cardiac causes in young stroke. The 28-day case fatality rate is reported at 19-31%.</p> <p>Conclusions</p> <p>Data on the epidemiology of stroke, its pattern and risk factors from Iran is scarce, but the available data highlights relatively low incidence of stroke. This may reflect a similarity towards the neighbouring nations, and a contrast with the West.</p