28 research outputs found

    Efficiency of Akkermansia muciniphila in type 2 diabetes and obesity

    Get PDF
    Akkermansia muciniphila is an anaerobic species of gut microbiome that has been proposed as a new functional microbiota with probiotic properties. Recent research has shown the amazing abilities of probiotic bacteria, A. muciniphila, which resides in most people's intestines. These bacteria affect the body if it increases or decreases abdominal fat. The presence of A. muciniphila has opened new ways for the use of this plentiful intestinal symbiont in next-generation therapeutic products, as well as targeting microbiota dynamics. A. muciniphila is particularly effective in increasing mucosal thickness and enhancing bowel barrier function. As a result, host metabolic markers improve. The host functions that are disrupted in various diseases with a particular focus on metabolic disorders in animals and humans. A specific protein in the outer membrane of A. muciniphila called Amuc-110 could in the future be a strong candidate for drug production. As a result, we suggest that microbes and our microbiology or gut microbiome knowledge could be a new source for future treatments. The objectives of this review are to summarize the data available on the distribution of A. muciniphila gut in health and disease, to provide insights into the environment and its role in the creation of microbial networks at the mucosal interface, as well as to discuss recent research on its role in regulation

    Spin Fidelity for Three-qubit Greenberger-Horne-Zeilinger and W States Under Lorentz Transformations

    Full text link
    Constructing the reduced density matrix for a system of three massive spin−12-\frac{1}{2} particles described by a wave packet with Gaussian momentum distribution and a spin part in the form of GHZ or W state, the fidelity for the spin part of the system is investigated from the viewpoint of moving observers in the jargon of special relativity. Using a numerical approach, it turns out that by increasing the boost speed, the spin fidelity decreases and reaches to a non-zero asymptotic value that depends on the momentum distribution and the amount of momentum entanglement.Comment: 12pages, 2 figure

    Molecular Detection of Type II Toxin-Antitoxin Systems and their Association with Antibiotic Resistance and Biofilm Formation in Clinical Acinetobacter baumannii Isolates of Burn Patients

    No full text
    Background and purpose: Burn wounds are a good host for infections. Acinetobacter baumannii is an opportunistic bacterium in patients with burn infections. Toxin-antitoxin systems (TAS) are genetic elements that are essential for antibiotic resistance and biofilm formation in bacteria, including higBA and relBE TA systems. The present study aimed to investigate the frequency of higBA and relBE genes in A. baumannii strains isolated from burn wound infection as well as the association between genetic elements and antibiotic resistance and biofilm formation. Materials and methods: In this descriptive cross-sectional study, 139 A. baumannii isolates were collected from burn wounds of patients hospitalized in a burn center in Isfahan, Iran. The isolates were identified and confirmed through biochemical and molecular tests. Antibiotic susceptibility testing was performed via disk diffusion method and biofilm production was detected by microtiter plate assay. Presence of higBA and relBE TA system genes was investigated by PCR. Results: Out of 139 A. baumannii isolates, 114 were multi-drug resistant (MDR) and able to form biofilm. relBE and higBA genes were observed in 94.73% and 8.77% of the isolates, respectively. Significant correlations were found between the presence of relBE and higBA genes and resistance to imipenem and levofloxacin (P0.05). Conclusion: In this study, the number of MDR A. baumanni strains was significantly higher compared to previous studies and most species had the ability to form biofilms. According to the association between TA genes and antibiotic resistance, further studies are needed on the TA systems

    Genetic Diversity of Drug-resistant Mycobacterium tuberculosis Isolates in Isfahan Province of Iran

    No full text
    Background: Increasing drug resistance is an important factor in the complexity of tuberculosis (TB) control. The identification of disease transmission type, recurrence of a previous infection, or new transmission of the disease is the key factor in the control of TB. In this study, we aimed to identify the genetic diversity of drug-resistant Mycobacterium tuberculosis isolates in Isfahan province of Iran through the mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing method based on 24 loci. Materials and Methods: Of 300 isolates obtained from a variety of clinical specimens, 18 drug-resistance M. tuberculosis clinical isolates (resistant to a single drug to more than one drug) were collected between 2013 and 2015 from regional TB reference laboratory in Isfahan. All drug-resistance M. tuberculosis isolates were typed by 24-locus MIRU-VNTR typing. Results: The highest percentage of isolates, 38.8%, belonged to the East-Asian lineage (lineage 2), while the lineages Indo-Oceanic (lineage 1), East-African–Indian (lineage 3), and Euro-American (lineage 4) represented 5.5%, 22.2%, and 33.3%, respectively. Among the 33.3% (6/18) Euro-American strains, the Latin American– Mediterranean and Ural sub-lineage were 22.2% (4/18) and 11.1% (2/18), respectively. Conclusion: The results of this study show that the lineages of drug-resistant M. tuberculosis isolates in Isfahan province of Iran are similar to those reported in the Eastern Mediterranean region (indicative of the epidemiological relationship between the countries in the region). Continued molecular monitoring is important as it has been proposed that the genetics and evolutionary backgrounds of drug-resistant M. tuberculosis strains may have an impact on the transmissibility profile

    Evaluation of the effect of Pulicaria gnaphalodes and Perovskia abrotanoides essential oil extracts against Mycobacterium tuberculosis strains

    No full text
    Background: Mycobacterium tuberculosis (MTB) is the causative agent of tuberculosis (TB), which remains one of the major public health problems in the world. The increasing incidence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) worldwide highlights the urgent need to search for alternative antimycobacterial agents. More and more people in developing countries utilize traditional medicine for their major primary health care needs. It has been determined that the medicinal plants Pulicaria gnaphalodes and Perovskia abrotanoides possess strong antibacterial effect. Materials and Methods: In this study, the antimycobacterial effects of P. gnaphalodes and P. abrotanoides essential oil on MTB were examined. Essential oil was prepared from P. gnaphalodes aerial parts and P. abrotanoides flower. The effects of six different concentrations (20 μg/ml, 40 μg/ml, 80 μg/ml, 160 μg/ml, 320 μg/ml, and 640 μg/ml) were examined against sensitive isolates of MTB and MTB H37Rv (ATCC 27294). Results: The results showed that P. gnaphalodes and P. abrotanoides essential oil extracts have strong inhibitory effects on MTB. This activity for P. gnaphalodes was observed from very low (4%) to good (70.9%) effect; meanwhile, this activity for P. abrotanoides was observed from very low (4%) to strong (86%) effect. Conclusion: The mean of inhibition percentage for P. gnaphalodes and P. abrotanoides in 640 μg/ml was 58.1% and 76.2%, respectively. So, P. abrotanoides plant is more effective against MTB than P. gnaphalodes. Identification of the effective fraction against MTB is a further step to be studied

    Identification of Class-1 Integron and Various Î’-Lactamase Classes among Clinical Isolates of Pseudomonas aeruginosa at Children's Medical Center Hospital

    No full text
    Background: Pseudomonas aeruginosa is one of the most important oppor- tunistic pathogens responsible for various types of infections. Children suffer significant morbidity and mortality due to nosocomial infections. The aim of this study was to investigate the presence of Class1 integron, blaBEL, blaPER, blaKPC, blaVIM, blaIMP and blaOXAgroup-1  genes among P. aeruginosa isolates at Children's Medical Center Hospital in Iran and to determine phenotypic evi- dence of ESBL and MBL production. Methods: Antibiotic susceptibility tests were analyzed for 72 P. aeruginosa clinical isolates. Isolates were identified by using biochemical tests and con- firmed by PCR assay for oprL gene. ESBL and MBL producer isolates were identified  by phenotypic  tests (double disc synergy tests). Detection of β- lactamase genes and class-1 integron were performed by PCR method. Results: All of the isolates were susceptible to ceftazidime / clavulanate, me- ropenem, imipenem and ciprofloxacin. About 83.3% and 16.7% of isolates were  resistant  to  ceftazidime  and  amikacin  respectively.  Approximately,83.3% of isolates were considered as potential ESBL producers. None of the clinical isolates showed above β-lactamase genes. It seems that, the reason is the absence of class-1 integron in all of isolates. About 16.7% of strains were identified  as multidrug  resistant.  Fortunately,  all of the isolates were sus- ceptible to meropenem and imipenem which are effective against ESBL pro- ducing strains. Conclusion:  The absences of class-1 integron decreases the probability of acquired β-lactamase especially MBL. Thus, absolute susceptibility to carba- penems and ciprofloxacin among P. aeruginosa isolates in pediatric hospital has important implications for empirical antimicrobial therapy. It seems that these properties help to decrease mortality of nosocomial infections within children
    corecore