10 research outputs found

    The ion channel transient receptor potential melastatin-2 does not play a role in inflammatory mouse models of chronic obstructive pulmonary diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is strong evidence that oxidative stress is associated with the pathogenesis of chronic obstructive pulmonary disease (COPD). The transient receptor potential melastatin-2 (TRPM2) is an oxidative stress sensing channel that is expressed in a number of inflammatory cells and therefore it has been suggested that inhibition of TRPM2 could lead to a beneficial effect in COPD patients. In this study, we have investigated the role of TRPM2 in a variety of mouse models of oxidative stress and COPD using TRPM2-deficent mice.</p> <p>Methods</p> <p>Mice were exposed to ozone (3 ppm for 4 h) or lipopolysaccharide (LPS, 0.3 mg/kg, intranasaly). In another model, mice were exposed to tobacco smoke (750 μg/l total wet particulate matter) for 30 min twice a day on three consecutive days. For the exacerbation model, the smoke exposure on the morning of day 3 animals was replaced with intranasal administration of LPS (0.3 mg/kg). Animals were killed 3 and 24 h after the challenge (ozone and LPS model) or 18 h after the last tobacco smoke exposure. In vitro neutrophil chemotaxis and monocyte activation were also studied using cells isolated from wild type and TRPM2-deficient animals. Statistical significance for the in vivo data (<it>P </it>< 0.05) was determined using analysis of variance with Kruskal-Wallis and Dunns multiple comparison test.</p> <p>Results</p> <p>In all models studied, no difference in the bronchoalveolar lavage inflammation could be evidenced when comparing wild type and TRPM2-deficient mice. In addition, no difference could be seen in the lung inflammation as assessed by the measurement of various cytokines/chemokines. Similarly in various in vitro cellular activation assays using isolated neutrophils and monocytes no significant differences could be observed when comparing wild type and TRPM2-deficient mice.</p> <p>Discussion</p> <p>We have shown, in all the models tested, no difference in the development of airway inflammation or cell activation between TRPM2-deficient mice and their wild type counterparts. These results would suggest that inhibiting TRPM2 activity in COPD would have no anti-inflammatory effect.</p

    Activation of human TRPC6 channels by receptor stimulation

    No full text
    The human TRPC6 channel was expressed in human embryonic kidney (HEK) cells, and activity was monitored using the giga-seal technique. Whole cell membrane currents with distinctive inward and outward rectification were activated by carbachol (CCh) in TRPC6-expressing cells, but not in lacZ-transfected controls. The effect of CCh was steeply dose-dependent with a K0.5 of ∼10 μM and a Hill coefficient of 3-4. A steep concentration-response relationship was also observed when TRPC6 activity was measured using a fluorescence-based imaging plate reader (FLIPR) assay for membrane depolarization. Ionomycin, thapsigargin, and dialysis of the cell with inositol 1,4,5-trisphosphate via the patch pipette had no effect on TRPC6 currents, but exogenous application of 1-oleoyl acetyl-sn-glycerol (OAG, 30-300 μm) produced a slow increase in channel activity. The PKC activator, phorbol 12-myristate 13-acetate (PMA, 0.5 μM) had no significant acute effect on TRPC6, or on the subsequent response to OAG. In contrast, the response to CCh was blocked &gt;90% by PMA pretreatment. To further explore the role of DAG in receptor stimulation, TRPC6 currents were monitored following the sequential addition of CCh and OAG. Surprisingly, concentrations of CCh that produced little or no response in the absence of OAG, produced increases in TRPC6 currents in the presence of OAG that were larger than the sum of either agent alone. Likewise, the response to OAG was superadditive following prior stimulation of the cells with near threshold concentrations of CCh. Overall, these results suggest that generation of DAG alone may not fully account for activation of TRPC6, and that other receptor-mediated events act synergistically with DAG to stimulate channel activity. This synergy may explain, at least in part, the steep dose-response relationship observed for CCh-induced TRPC6 currents expressed in HEK cells

    Expression of transient receptor potential C6 channels in human lung macrophages

    No full text
    Chronic obstructive pulmonary disease (COPD) is associated with pulmonary inflammation with increased numbers of macrophages located in the parenchyma. These macrophages have the capacity to mediate the underlying pathophysiology of COPD; therefore, a better understanding of their function in chronic inflammation associated with this disease is vital. Ion channels regulate many cellular functions; however, their role in macrophages is unclear. This study examined the expression and function of transient receptor potential (TRP) channels in human macrophages. Human alveolar macrophages and lung tissue macrophages expressed increased mRNA and protein for TRPC6 when compared with monocytes and monocyte-derived macrophages. Moreover, TRPC6 mRNA expression was significantly elevated in alveolar macrophages from patients with COPD compared with control subjects. There were no differences in mRNA for TRPC3 or TRPC7. Although mRNA for TRPM2 and TRPV1 was detected in these cells, protein expression could not be determined. Fractionation of lung-derived macrophages demonstrated that TRPC6 protein was more highly expressed by smaller macrophages compared with larger macrophages. Using whole-cell patch clamp electrophysiology, TRPC6-like currents were measured in both macrophage subpopulations with appropriate biophysical and basic pharmacological profiles. These currents were active under basal conditions in the small macrophages. These data suggest that TRPC6-like channels are functional on human lung macrophages, and may be associated with COPD

    Discovery of Icenticaftor (QBW251), a Cystic Fibrosis Transmembrane Conductance Regulator Potentiator with Clinical Efficacy in Cystic Fibrosis and Chronic Obstructive Pulmonary Disease

    No full text
    Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) ion channel are established as the primary causative factor in the devastating lung disease cystic fibrosis (CF). More recently, cigarette smoke exposure has been shown to be associated with dysfunctional airway epithelial ion transport, suggesting a role for CFTR in the pathogenesis of Chronic Obstructive Pulmonary Disease (COPD). Here, the identification and characterization of a high throughput screening hit 6 as a potentiator of mutant human F508del and wild type CFTR channels is reported. The design, synthesis and biological evaluation of compounds 7 to 33 to establish structure activity relationships (SAR) of the scaffold are described, leading to the identification of clinical development compound icenticaftor (QBW251) 33, which has subsequently progressed to deliver two positive clinical proofs of concept in patients with CF and COPD and is now being further developed as a novel therapeutic approach for COPD patients

    Discovery of Icenticaftor (QBW251), a Cystic Fibrosis Transmembrane Conductance Regulator Potentiator with Clinical Efficacy in Cystic Fibrosis and Chronic Obstructive Pulmonary Disease

    No full text
    Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) ion channel are established as the primary causative factor in the devastating lung disease cystic fibrosis (CF). More recently, cigarette smoke exposure has been shown to be associated with dysfunctional airway epithelial ion transport, suggesting a role for CFTR in the pathogenesis of Chronic Obstructive Pulmonary Disease (COPD). Here, the identification and characterization of a high throughput screening hit 6 as a potentiator of mutant human F508del and wild type CFTR channels is reported. The design, synthesis and biological evaluation of compounds 7 to 33 to establish structure activity relationships (SAR) of the scaffold are described, leading to the identification of clinical development compound icenticaftor (QBW251) 33, which has subsequently progressed to deliver two positive clinical proofs of concept in patients with CF and COPD and is now being further developed as a novel therapeutic approach for COPD patients
    corecore