16 research outputs found

    Synthetic asters as elastic and radial skeletons

    Get PDF
    The radial geometry with rays radiated from a common core occurs ubiquitously in nature for its symmetry and functions. Herein, we report a class of synthetic asters with well-defined core-ray geometry that can function as elastic and radial skeletons to harbor nano- and microparticles. We fabricate the asters in a single, facile, and high-yield step that can be readily scaled up; specifically, amphiphilic gemini molecules self-assemble in water into asters with an amorphous core and divergently growing, twisted crystalline ribbons. The asters can spontaneously position microparticles in the cores, along the radial ribbons, or by the outer rims depending on particle sizes and surface chemistry. Their mechanical properties are determined on single- and multiple-aster levels. We further maneuver the synthetic asters as building blocks to form higher-order structures in virtue of aster-aster adhesion induced by ribbon intertwining. We envision the astral structures to act as rudimentary spatial organizers in nanoscience for coordinated multicomponent systems, possibly leading to emergent, synergistic functions

    Self-assembly of nanoparticles into biomimetic capsid-like nanoshells

    No full text
    Nanoscale compartments are one of the foundational elements of living systems. Capsids, carboxysomes, exosomes, vacuoles and other nanoshells easily self-assemble from biomolecules such as lipids or proteins, but not from inorganic nanomaterials because of difficulties with the replication of spherical tiling. Here we show that stabilizer-free polydispersed inorganic nanoparticles (NPs) can spontaneously organize into porous nanoshells. The association of water-soluble CdS NPs into self-limited spherical capsules is the result of scale-modified electrostatic, dispersion and other colloidal forces. They cannot be accurately described by the Derjaguin–Landau–Vervey–Overbeek theory, whereas molecular-dynamics simulations with combined atomistic and coarse-grained description of NPs reveal the emergence of nanoshells and some of their stabilization mechanisms. Morphology of the simulated assemblies formed under different conditions matched nearly perfectly the transmission electron microscopy tomography data. This study bridges the gap between biological and inorganic self-assembling nanosystems and conceptualizes a new pathway to spontaneous compartmentalization for a wide range of inorganic NPs including those existing on prebiotic Earth

    Emergence of complexity inhierarchically organized chiral particles

    No full text
    The structural complexity of composite biomaterials and biomineralized particles arises from the hierarchical ordering of inorganic building blocks over multiple scales. While empirical observations of complex nanoassemblies are abundant, physicochemical mechanisms leading to their geometrical complexity are still puzzling, especially for non-uniformly sized components. Here we report the assembly of hierarchically organized particles (HOPs) with twisted spikes and other morphologies from polydisperse Au-Cys nanoplatelets. The complexity of Au-Cys HOPs is higher than biological counterparts or other complex particles as enumerated by graph theory methods. Their intricate organization emerges from competing chirality-dependent assembly restrictions that render assembly pathways primarily dependent on nanoparticle symmetry rather than size. These findings and HOPs phase diagrams open a pathway to a large family of colloids with complex architectures and unusual chiroptical and chemical properties

    Design of robust superhydrophobic surfaces

    No full text
    | openaire: EC/H2020/725513/EU//SuperRepelThe ability of superhydrophobic surfaces to stay dry, self-clean and avoid biofouling is attractive for applications in biotechnology, medicine and heat transfer 1–10. Water droplets that contact these surfaces must have large apparent contact angles (greater than 150 degrees) and small roll-off angles (less than 10 degrees). This can be realized for surfaces that have low-surface-energy chemistry and micro- or nanoscale surface roughness, minimizing contact between the liquid and the solid surface 11–17. However, rough surfaces—for which only a small fraction of the overall area is in contact with the liquid—experience high local pressures under mechanical load, making them fragile and highly susceptible to abrasion 18. Additionally, abrasion exposes underlying materials and may change the local nature of the surface from hydrophobic to hydrophilic 19, resulting in the pinning of water droplets to the surface. It has therefore been assumed that mechanical robustness and water repellency are mutually exclusive surface properties. Here we show that robust superhydrophobicity can be realized by structuring surfaces at two different length scales, with a nanostructure design to provide water repellency and a microstructure design to provide durability. The microstructure is an interconnected surface frame containing ‘pockets’ that house highly water-repellent and mechanically fragile nanostructures. This surface frame acts as ‘armour’, preventing the removal of the nanostructures by abradants that are larger than the frame size. We apply this strategy to various substrates—including silicon, ceramic, metal and transparent glass—and show that the water repellency of the resulting superhydrophobic surfaces is preserved even after abrasion by sandpaper and by a sharp steel blade. We suggest that this transparent, mechanically robust, self-cleaning glass could help to negate the dust-contamination issue that leads to a loss of efficiency in solar cells. Our design strategy could also guide the development of other materials that need to retain effective self-cleaning, anti-fouling or heat-transfer abilities in harsh operating environments.Peer reviewe
    corecore