3 research outputs found

    Single-Shot End-to-end Road Graph Extraction

    Get PDF
    International audienceAutomatic road graph extraction from aerial and satellite images is a long-standing challenge. Existing algorithms are either based on pixel-level segmentation followed by vectorization, or on iterative graph construction using next move prediction. Both of these strategies suffer from severe drawbacks, in particular high computing resources and incomplete outputs. By contrast, we propose a method that directly infers the final road graph in a single pass. The key idea consists in combining a Fully Convolutional Network in charge of locating points of interest such as intersections, dead ends and turns, and a Graph Neural Network which predicts links between these points. Such a strategy is more efficient than iterative methods and allows us to streamline the training process by removing the need for generation of starting locations while keeping the training end-to-end. We evaluate our method against existing works on the popular RoadTracer dataset and achieve competitive results. We also benchmark the speed of our method and show that it outperforms existing approaches. Our method opens the possibility of in-flight processing on embedded devices for applications such as real-time road network monitoring and alerts for disaster response

    Virtual pre-operative planning in acetabular surgery using a patient-specific biomechanical model: a prospective clinical study

    No full text
    International audienceThe first patient-specific biomechanical model for pre-operative planning in acetabular surgery was developed in our institution and validated in previous retrospective studies. The aim of this prospective clinical study was to confirm the previous promising. Between January 2019 and June 2019, every patients operated by the first author for acetabular fracture were included in this prospective study. A biomechanical model was implemented in acustom software made from combination of several open-sources software allowing a biomechanical simulation. The surgery was then performed according to the simulation. Surgery duration, blood loss, radiological results and peroperative complications were recorded. Ten patients were included. Mean simulation time was 22 min ± 4 [range, 18-31]. The mean operative time was 113 min ± 33 [range, 60-180] and mean blood loss was 505 mL ± 189 [range, 100-750]. On Matta's criteria, anatomic reduction was achieved in 9 of the 10 patients (90%; 0.8 mm ± 1 [range, 0-3]). No per-operative complications were recorded. This study confirms the promising results of pre-operative planning in acetabular surgery based on a patient-specific biomechanical model.The model needs larger-scale prospective validation, but offers a new tool suitable for teaching purposes and for assessment of surgical strategies in acetabular fracture

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    No full text
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42·4% vs 44·2%; absolute difference -1·69 [-9·58 to 6·11] p=0·67; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5-8] vs 6 [5-8] cm H2O; p=0·0011). ICU mortality was higher in MICs than in HICs (30·5% vs 19·9%; p=0·0004; adjusted effect 16·41% [95% CI 9·52-23·52]; p<0·0001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0·80 [95% CI 0·75-0·86]; p<0·0001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status
    corecore