73 research outputs found

    Slip and hall current effects on Jeffrey fluid suspension flow in a peristaltic hydromagnetic blood micropump

    Get PDF
    The magnetic properties of blood allow it to be manipulated with an electromagnetic field. Electromagnetic blood flow pumps are a robust technology which provide more elegant and sustainable performance compared with conventional medical pumps. Blood is a complex multi-phase suspension with non-Newtonian characteristics which are significant in micro-scale transport. Motivated by such applications, in the present article a mathematical model is developed for magnetohydrodynamic (MHD) pumping of blood in a deformable channel with peristaltic waves. A Jeffery’s viscoelastic formulation is employed for the rheology of blood. A twophase fluid-particle (“dusty”) model is utilized to better simulate suspension characteristics (plasma and erythrocytes). Hall current and wall slip effects are incorporated to achieve more realistic representation of actual systems. A two-dimensional asymmetric channel with dissimilar peristaltic wave trains propagating along the walls is considered. The governing conservation equations for mass, fluid and particle momentum are formulated with appropriate boundary conditions. The model is simplified using of long wavelength and creeping flow approximations. The model is also transformed from the fixed frame to the wave frame and rendered non-dimensional. Analytical solutions are derived. The resulting boundary value problem is solved analytically and exact expressions are derived for the fluid velocity, particulate velocity, fluid/particle fluid and particulate volumetric flow rates, axial pressure gradient, pressure rise and skin friction distributions are evaluated in detail. Increasing Hall current parameter reduces bolus growth in the channel, particle phase velocity and pressure difference in the augmented pumping region whereas it increases fluid phase velocity, axial pressure gradient and pressure difference in the pumping region. Increasing the hydrodynamic slip parameter accelerates both particulate and fluid phase flow at and close to the channel walls, enhances wall skin friction, boosts pressure difference in the augmented pumping region and increases bolus magnitudes. Increasing viscoelastic parameter (stress relaxation time to retardation time ratio) decelerates the fluid phase flow, accelerates the particle phase flow, decreases axial pressure gradient, elevates pressure difference in the augmented pumping region and reduces pressure difference in the pumping region. Increasing drag particulate suspension parameter decelerates the particle phase velocity, accelerates the fluid phase velocity, strongly elevates axial pressure gradient and reduces pressure difference (across one wavelength) in the augmented pumping region. Increasing particulate volume fraction density enhances bolus magnitudes in both the upper and lower zones of the channel and elevates pressure rise in the augmented pumping region

    Dermal microfilariae of dogs, jackals and cats in different regions of Iran

    No full text
    Background: Due to the complexity of retrieving skin-dwelling microfilariae, filarioids of dogs presenting dermal microfilariae (e.g. Cercopithifilaria spp., Onchocerca lupi) are relatively unknown compared to Dirofilaria spp. and Acanthocheilonema spp. whose microfilariae circulate in the blood. Although Cercopithifilaria spp. and O. lupi filarioids are distributed worldwide, there is a paucity of information on their occurrence in Iran. The aim of this study was to investigate these filarioids in a large population of dogs from different regions of Iran. Methods: From October 2018 to September 2020, skin biopsies were obtained from dogs housed in shelters (n = 557) and privately owned dogs (n = 26) in seven provinces of Iran (Hamedan, Kermanshah, Yazd, Mazandaran, Khuzestan, Lorestan, Esfahan), as well as from three road-killed jackals (Canis aureus) and three cats (Felis catus) in Hamedan province. The skin biopsies were first soaked in saline solution at room temperature overnight, and examined for dermal microfilariae under the microscope. Positive skin specimens and sediments were tested by PCR for a 304-bp region of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene and amplicons were sequenced. Results: Microfilariae of Cercopithifilaria spp. were found in skin biopsies of 32 of the 583 (5.5%) dogs tested, with infection rates of up to 25% in Kermanshah. No microfilariae were recovered from skin biopsy samples collected from dogs in Khorramabad and Ahvaz, nor from the examined jackals and cats. None of the privately owned dogs were found to be infected. Morphologic and morphometric characteristics of the microfilariae were consistent with C. bainae. Eighteen skin samples were positive for the cox1 gene, of which 15 sequences showed a nucleotide identity of 100% and three of 93.4% with the reference sequence of C. bainae available in GenBank (haplotype I; GenBank accession number: JF461457). Conclusions: The data from this study broadens current knowledge on the geographical distribution of C. bainae in dogs in Middle Eastern countries. Further studies on different wild canine species in the country (e.g. jackal, fox, wolf) could provide further information on the epidemiology of these filarioids. A particular focus should be put on zoonotic O. lupi given the reports of its presence in human patients from this country. Graphical Abstract: [Figure not available: see fulltext.
    • …
    corecore