4 research outputs found

    Interobserver variation in tumor delineation of liver metastases using Magnetic Resonance Imaging

    Get PDF
    Background and purpose: Magnetic Resonance Imaging (MRI) guided stereotactic body radiotherapy (SBRT) of liver metastases is an upcoming high-precision non-invasive treatment. Interobserver variation (IOV) in tumor delineation, however, remains a relevant uncertainty for planning target volume (PTV) margins. The aims of this study were to quantify IOV in MRI-based delineation of the gross tumor volume (GTV) of liver metastases and to detect patient-specific factors influencing IOV. Materials and methods: A total of 22 patients with liver metastases from three primary tumor origins were selected (colorectal(8), breast(6), lung(8)). Delineation guidelines and planning MRI-scans were provided to eight radiation oncologists who delineated all GTVs. All delineations were centrally peer reviewed to identify outliers not meeting the guidelines. Analyses were performed both in- and excluding outliers. IOV was quantified as the standard deviation (SD) of the perpendicular distance of each observer's delineation towards the median delineation. The correlation of IOV with shape regularity, tumor origin and volume was determined. Results: Including all delineations, average IOV was 1.6 mm (range 0.6–3.3 mm). From 160 delineations, in total fourteen single delineations were marked as outliers after peer review. After excluding outliers, the average IOV was 1.3 mm (range 0.6–2.3 mm). There was no significant correlation between IOV and tumor origin or volume. However, there was a significant correlation between IOV and regularity (Spearman's ρs = -0.66; p = 0.002). Conclusion: MRI-based IOV in tumor delineation of liver metastases was 1.3–1.6 mm, from which PTV margins for IOV can be calculated. Tumor regularity and IOV were significantly correlated, potentially allowing for patient-specific margin calculation

    Local Control Following Stereotactic Body Radiation Therapy for Liver Oligometastases: Lessons from a Quarter Century

    Get PDF
    The utilization of stereotactic body radiation therapy for the treatment of liver metastasis has been widely studied and has demonstrated favorable local control outcomes. However, several predictive factors play a crucial role in the efficacy of stereotactic body radiation therapy, such as the number and size (volume) of metastatic liver lesions, the primary tumor site (histology), molecular biomarkers (e.g., KRAS and TP53 mutation), the use of systemic therapy prior to SBRT, the radiation dose, and the use of advanced technology and organ motion management during SBRT. These prognostic factors need to be considered when clinical trials are designed to evaluate the efficacy of SBRT for liver metastases

    Treatment planning for MR-guided SBRT of pancreatic tumors on a 1.5 T MR-Linac: A global consensus protocol

    Get PDF
    Background and purpose: Treatment planning for MR-guided stereotactic body radiotherapy (SBRT) for pancreatic tumors can be challenging, leading to a wide variation of protocols and practices. This study aimed to harmonize treatment planning by developing a consensus planning protocol for MR-guided pancreas SBRT on a 1.5 T MR-Linac. Materials and methods: A consortium was founded of thirteen centers that treat pancreatic tumors on a 1.5 T MR-Linac. A phased planning exercise was conducted in which centers iteratively created treatment plans for two cases of pancreatic cancer. Each phase was followed by a meeting where the instructions for the next phase were determined. After three phases, a consensus protocol was reached. Results: In the benchmarking phase (phase I), substantial variation between the SBRT protocols became apparent (for example, the gross tumor volume (GTV) D99% ranged between 36.8 – 53.7 Gy for case 1, 22.6 – 35.5 Gy for case 2). The next phase involved planning according to the same basic dosimetric objectives, constraints, and planning margins (phase II), which led to a large degree of harmonization (GTV D99% range: 47.9–53.6 Gy for case 1, 33.9–36.6 Gy for case 2). In phase III, the final consensus protocol was formulated in a treatment planning system template and again used for treatment planning. This not only resulted in further dosimetric harmonization (GTV D99% range: 48.2–50.9 Gy for case 1, 33.5–36.0 Gy for case 2) but also in less variation of estimated treatment delivery times. Conclusion: A global consensus protocol has been developed for treatment planning for MR-guided pancreatic SBRT on a 1.5 T MR-Linac. Aside from harmonizing the large variation in the current clinical practice, this protocol can provide a starting point for centers that are planning to treat pancreatic tumors on MR-Linac systems
    corecore