764 research outputs found

    Resonances in a two-dimensional electron waveguide with a single delta-function scatterer

    Full text link
    We study the conductance properties of a straight two-dimensional electron waveguide with an s-like scatterer modeled by a single delta-function potential with a finite number of modes. Even such a simple system exhibits interesting resonance phenomena. These resonances are explained in terms of quasi-bound states both by using a direct solution of the Schroedinger equation and by studying the Green's function of the system. Using the Green's function we calculate the survival probability as well as the power absorption and show the influence of the quasi-bound states on these two quantities.Comment: 5 pages, 6 figures, to be published in Physical Review

    Weakly nonlinear quantum transport: an exactly solvable model

    Get PDF
    We have studied the weakly non-linear quantum transport properties of a two-dimensional quantum wire which can be solved exactly. The non-linear transport coefficients have been calculated and interesting physical properties revealed. In particular we found that as the incoming electron energy approaches a resonant point given by energy E=ErE=E_r, where the transport is characterized by a complete reflection, the second order non-linear conductance changes its sign. This has interesting implications to the current-voltage characteristics. We have also investigated the establishment of the gauge invariance condition. We found that for systems with a finite scattering region, correction terms to the theoretical formalism are needed to preserve the gauge invariance. These corrections were derived analytically for this model.Comment: 15 pages, LaTeX, submitted to Phys. Rev.

    Increasing Dominance - the Role of Advertising, Pricing and Product Design

    Get PDF
    Despite the empirical relevance of advertising strategies in concentrated markets, the economics literature is largely silent on the effect of persuasive advertising strategies on pricing, market structure and increasing (or decreasing) dominance. In a simple model of persuasive advertising and pricing with differentiated goods, we analyze the interdependencies between ex-ante asymmetries in consumer appeal, advertising and prices. Products with larger initial appeal to consumers will be advertised more heavily but priced at a higher level - that is, advertising and price discounts are strategic substitutes for products with asymmetric initial appeal. We find that the escalating effect of advertising dominates the moderating effect of pricing so that post-competition market shares are more asymmetric than pre-competition differences in consumer appeal. We further find that collusive advertising (but competitive pricing) generates the same market outcomes, and that network effects lead to even more extreme market outcomes, both directly and via the effect on advertising

    Transmission Through Carbon Nanotubes With Polyhedral Caps

    Full text link
    We study electron transport between capped carbon nanotubes and a substrate, and relate the transmission probability to the local density of states in the cap. Our results show that the transmission probability mimics the behavior of the density of states at all energies except those that correspond to localized states in the cap. Close proximity of a substrate causes hybridization of the localized state. As a result, new transmission paths open from the substrate to nanotube continuum states via the localized states in the cap. Interference between various transmission paths gives rise to antiresonances in the transmission probability, with the minimum transmission equal to zero at energies of the localized states. Defects in the nanotube that are placed close to the cap cause resonances in the transmission probability, instead of antiresonances, near the localized energy levels. Depending on the spatial position of defects, these resonant states are capable of carrying a large current. These results are relevant to carbon nanotube based studies of molecular electronics and probe tip applications

    Loss of Andreev Backscattering in Superconducting Quantum Point Contacts

    Full text link
    We study effects of magnetic field on the energy spectrum in a superconducting quantum point contact. The supercurrent induced by the magnetic field leads to intermode transitions between the electron waves that pass and do not pass through the constriction. The latter experience normal reflections which couple the states with opposite momenta inside the quantum channel and create a minigap in the energy spectrum that depends on the magnetic field

    Coherent quantum transport in narrow constrictions in the presence of a finite-range longitudinally polarized time-dependent field

    Full text link
    We have studied the quantum transport in a narrow constriction acted upon by a finite-range longitudinally polarized time-dependent electric field. The electric field induces coherent inelastic scatterings which involve both intra-subband and inter-sideband transitions. Subsequently, the dc conductance G is found to exhibit suppressed features. These features are recognized as the quasi-bound-state (QBS) features which are associated with electrons making transitions to the vicinity of a subband bottom, of which the density of states is singular. Having valley-like instead of dip-like structures, these QBS features are different from the G characteristics for constrictions acted upon by a finite-range time-modulated potential. In addition, the subband bottoms in the time-dependent electric field region are shifted upward by an energy proportional to the square of the electric field and inversely proportional to the square of the frequency. This effective potential barrier is originated from the square of the vector potential and it leads to the interesting field-sensitive QBS features. An experimental set-up is proposed for the observation of these features.Comment: 8 pages, 4 figure

    Floquet Formalism of Quantum Pumps

    Full text link
    We review Floquet formalism of quantum electron pumps. In the Floquet formalism the quantum pump is regarded as a time dependent scattering system, which allows us to go beyond the adiabatic limit. It can be shown that the well-known adiabatic formula given by Brouwer can be derived from the adiabatic limit of Floquet formalism. We compare various physical properties of the quantum pump both in the adiabatic and in the non-adiabatic regime using the Floquet theory.Comment: Latex2e 16 pages, 6 figures. A review paper to appear in Int. J. Mod. Phys.
    • ā€¦
    corecore