2 research outputs found

    Wilson-Polchinski exact renormalization group equation for O(N) systems: Leading and next-to-leading orders in the derivative expansion

    Full text link
    With a view to study the convergence properties of the derivative expansion of the exact renormalization group (RG) equation, I explicitly study the leading and next-to-leading orders of this expansion applied to the Wilson-Polchinski equation in the case of the NN-vector model with the symmetry O(N)\mathrm{O}(N) . As a test, the critical exponents % \eta and ν\nu as well as the subcritical exponent ω\omega (and higher ones) are estimated in three dimensions for values of NN ranging from 1 to 20. I compare the results with the corresponding estimates obtained in preceding studies or treatments of other O(N)\mathrm{O}(N) exact RG equations at second order. The possibility of varying NN allows to size up the derivative expansion method. The values obtained from the resummation of high orders of perturbative field theory are used as standards to illustrate the eventual convergence in each case. A peculiar attention is drawn on the preservation (or not) of the reparametrisation invariance.Comment: Dedicated to Lothar Sch\"afer on the occasion of his 60th birthday. Final versio

    Critical equation of state of randomly dilute Ising systems

    Full text link
    We determine the critical equation of state of three-dimensional randomly dilute Ising systems, i.e. of the random-exchange Ising universality class. We first consider the small-magnetization expansion of the Helmholtz free energy in the high-temperature phase. Then, we apply a systematic approximation scheme of the equation of state in the whole critical regime, that is based on polynomial parametric representations matching the small-magnetization of the Helmholtz free energy and satisfying a global stationarity condition. These results allow us to estimate several universal amplitude ratios, such as the ratio A^+/A^- of the specific-heat amplitudes. Our best estimate A^+/A^-=1.6(3) is in good agreement with experimental results on dilute uniaxial antiferromagnets.Comment: 21 pages, 1 figure, refs adde
    corecore