6,767 research outputs found
Object oriented data analysis in ALEPH
This article describes the status of the ALPHA^{++} project of the ALEPH collaboration. The ALEPH data have been converted from Fortran data structures (BOS banks) into C^{++} objects and stored in a object oriented database (Objectivity/DB), using tools provided by the RD45 collaboration and the LHC^{++} software project at CERN. A description of the database setup and of a preliminary version of an object oriented analysis program is given.This article describes the status of the ALPHA^{++} project of the ALEPH collaboration. The ALEPH data have been converted from Fortran data structures (BOS banks) into C^{++} objects and stored in a object oriented database (Objectivity/DB), using tools provided by the RD45 collaboration and the LHC^{++} software project at CERN. A description of the database setup and of a preliminary version of an object oriented analysis program is given
Higgs mediated Double Flavor Violating top decays in Effective Theories
The possibility of detecting double flavor violating top quark transitions at
future colliders is explored in a model-independent manner using the effective
Lagrangian approach through the () decays. A
Yukawa sector that contemplates invariants of up to
dimension six is proposed and used to derive the most general flavor violating
and CP violating and vertices of renormalizable type.
Low-energy data, on high precision measurements, and experimental limits are
used to constraint the and vertices and then used to
predict the branching ratios for the decays. It is found
that this branching ratios may be of the order of , for a
relative light Higgs boson with mass lower than , which could be more
important than those typical values found in theories beyond the standard model
for the rare top quark decays () or . %% LHC experiments, by using a total integrated luminosity of of data, will be able to rule out, at 95% C.L., DFV top quark
decays up to a Higgs mass of 155 GeV/ or discover such a process up to a
Higgs mass of 147 GeV/.Comment: 24 pages, 11 figure
Beam test calibration of the balloon-borne imaging calorimeter for the CREAM experiment
CREAM (Cosmic Ray Energetics And Mass) is a multi-flight balloon mission
designed to collect direct data on the elemental composition and individual
energy spectra of cosmic rays. Two instrument suites have been built to be
flown alternately on a yearly base. The tungsten/Sci-Fi imaging calorimeter for
the second flight, scheduled for December 2005, was calibrated with electron
and proton beams at CERN. A calibration procedure based on the study of the
longitudinal shower profile is described and preliminary results of the beam
test are presented.Comment: 4 pages, 4 figures. To be published in the Proceedings of 29th
International Cosmic Ray Conference (ICRC 2005), Pune, India, August 3-10,
200
Proceedings of the Workshop on Monte Carlo's, Physics and Simulations at the LHC PART II
These proceedings collect the presentations given at the first three meetings
of the INFN "Workshop on Monte Carlo's, Physics and Simulations at the LHC",
held at the Frascati National Laboratories in 2006. The first part of these
proceedings contains pedagogical introductions to several basic topics of both
theoretical and experimental high pT LHC physics. The second part collects more
specialised presentations.Comment: 157 pages, 136 figures; contribution by M. Grazzini has been adde
Measurements of cosmic-ray energy spectra with the 2nd CREAM flight
During its second Antarctic flight, the CREAM (Cosmic Ray Energetics And
Mass) balloon experiment collected data for 28 days, measuring the charge and
the energy of cosmic rays (CR) with a redundant system of particle
identification and an imaging thin ionization calorimeter. Preliminary direct
measurements of the absolute intensities of individual CR nuclei are reported
in the elemental range from carbon to iron at very high energy.Comment: 4 pages, 3 figures, presented at XV International Symposium on Very
High Energy Cosmic Ray Interactions (ISVHECRI 2008
Elemental energy spectra of cosmic rays measured by CREAM-II
We present new measurements of the energy spectra of cosmic-ray (CR) nuclei
from the second flight of the balloon-borne experiment CREAM (Cosmic Ray
Energetics And Mass). The instrument (CREAM-II) was comprised of detectors
based on different techniques (Cherenkov light, specific ionization in
scintillators and silicon sensors) to provide a redundant charge identification
and a thin ionization calorimeter capable of measuring the energy of cosmic
rays up to several hundreds of TeV. The data analysis is described and the
individual energy spectra of C, O, Ne, Mg, Si and Fe are reported up to ~ 10^14
eV. The spectral shape looks nearly the same for all the primary elements and
can be expressed as a power law in energy E^{-2.66+/-0.04}. The nitrogen
absolute intensity in the energy range 100-800 GeV/n is also measured.Comment: 4 pages, 3 figures, presented at ICRC 2009, Lodz, Polan
An overview of the design, construction and performance of large area triple-GEM prototypes for future upgrades of the CMS forward muon system
GEM detectors are used in high energy physics experiments given their good spatial resolution, high rate capability and radiation hardness. An international collaboration is investigating the possibility of covering the 1.6 < vertical bar eta vertical bar < 2.4 region of the CMS muon endcaps with large-area triple-GEM detectors. The CMS high-eta area is actually not fully instrumented, only Cathode Strip Chamber (CSC) are installed. The vacant area presents an opportunity for a detector technology able to to cope with the harsh radiation environment; these micropattern gas detectors are an appealing option to simultaneously enhance muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study is presented. Design and construction of small (10cm x 10cm) and full-size trapezoidal (1m x 0.5m) triple-GEM prototypes is described. Results from measurements with x-rays and from test beam campaigns at the CERN SPS is shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system are reported
- …