338 research outputs found

    Circular simple shear extrusion as an alternative for simple shear extrusion technique for producing bulk nanostructured materials

    Get PDF
    © 2018 The Authors. Published by Elsevier B.V. Recently, simple shear extrusion is introduced to fabricate ultrafine-grained materials. It was designed for billets with square cross-sections and was investigated well previously. This study aims to introduce an alternative design of simple shear extrusion process with a circular cross-section, which is named circular simple shear extrusion. The deformation behavior during the new process is investigated by finite element analysis using ABAQUS/Explicit software package. The load of the process and the strain distribution on the processed-sample are studied by a set of simulations. The results show that, in comparison to conventional simple shear extrusion, the circular simple shear extrusion process needs lower extrusion pressures. Also, the accumulated strains are closer to theoretical ones. The amount of friction force in the process with circular cross-section is lower in comparison with the square one which leads to both, the longer service life of the circular simple shear extrusion dies and the lower cost of production. Hence, this new geometry has a strong potential in terms of industrial applications.Shiraz University (grant number 96-GR-ENG-15)

    Improvement of Hydrogenation and Dehydrogenation Kinetics of As-Cast AZ91 Magnesium Alloy via Twin Parallel Channel Angular Extrusion Processing

    Get PDF
    Copyright: © 2022 by the authors. In the current study, Twin Parallel Channel Angular Extrusion (TPCAE) as a developed SPD processing technique is used to improve the hydrogen storage properties of AZ91 cast alloy. The processing is conducted at different temperatures, ranging from 340 °C down to 200 °C. The hydrogen absorption and desorption tests are conducted kinetically at three different temperatures, using a Sievert-type apparatus. Remarkable improvement in the absorption kinetic is achieved as a result of the TPCAE processing. A maximum absorption capacity of 6.1 wt.% within a time span of 2000 s is achieved for the sample with three passes of processing complemented at 250 °C. Also, the kinetic of dehydrogenation is improved significantly and complete desorption at 350 °C is achieved for all the processed samples within a time span of maximum 2500 s. By calculating the activation energy of hydrogenation and evaluating the microstructure changes, it is found that implementing sufficient thermomechanical work level along with applying the last pass of the process at lower temperature results in a reduction of the activation energy and improvement of the hydrogenation kinetic.Shiraz University, grant number 99-GR-ENG 15

    Assessment of self-piercing riveted joints using the analytic hierarchy process

    Get PDF
    © 2019 by the authors. Self-piercing riveting (SPR) as a solid-state joining technology has recently found extensive applications in the automotive industry, mostly in the joining of car body aluminium sheets. To achieve an acceptable joint, key operation and tooling parameters, including set force, die profile, and rivet shape and hardness, should be selected appropriately. To evaluate joint performance, the interlocking parameters and joint strength have to be determined. In the current laboratory and industrial practices, joint quality is assessed according to requirements of individual applications, lacking a systematic assessment method. The goal of the present study is to develop a method to determine the SPR conditions that produce a joint of the best quality, based on an analytic hierarchy process (AHP), which is a methodology for relative measurement. A general AHP model was proposed for analysing SPR and joint performance in different conditions and with an unlimited number of criteria and alternatives. Joints of two layers of 2.5 mm thick AA6082 aluminium sheets in T6 condition were produced using various dies, rivets, and SPR processing conditions. A selection of seven joints, which achieved minimum requirements in terms of interlocking parameters and strength, was nominated for AHP assessment. With the application of six criteria, including head height, bottom thickness, minimum bottom thickness, deformed rivet diameter, shear strength, and peel strength, the AHP assessment was able to define the best conditions for the SPR joining of the aluminium alloy sheets

    Effect of strain energy on corrosion behavior of ultrafine grained copper prepared by severe plastic deformation

    Get PDF
    Data Availability Statement The processed data needed to reproduce these findings cannot be shared at this time, as they also form part of an ongoing study, in accordance with the funder's data retention policy.Copyright 2022 The Authors. Effect of strain energy on corrosion behavior of ultrafine-grained (UFG) copper prepared by severe plastic deformation (SPD) was investigated in terms of microstructural evolution. The SPD processed material showed an ultrafine-grained (UFG) structure after grain refinement for several time processes, which will affect mechanical and corrosion behavior Homogeneity can be obtained efficiently through the pressing process commonly known as simple shear extrusion (SSE), which is one of the SPD techniques. Pure copper was processed by SSE for two, four, eight, and twelve passes. The structure of SSE treated sample was observed by laser microscope and transmission electron microscope as well as X-ray diffraction. The corrosion behavior by potentiodynamic polarization curve was observed in modified Livingstone solution, 1 M NaCl, and sulphuric solution. The structure of SSE processed sample showed that the first pass of the SSE processed sample displayed large deformation by developing the elongated grain and sub-grain structure. By increasing the SSE pass number, the grain shape became equiaxed due to excessive strain. The X-ray broadening related to ultrafine-grained (UFG) structure processed SSE on the copper sample, leading to smaller crystallite size, higher microstrain, and higher dislocation density. More homogeneous passive film was developed on the material with UFG structure appearance. However, the current density in 1 M NaCl was decreased by an increment of pass number due to the dissolution of copper metal. The UFG structure has more boundaries than coarse grain structure, and these phenomena show why Cu dissolve ability influences the current density. The grain boundary behaves as the cathodic site.Grant-in-Aid for Scientific Research on Innovative Areas “Bulk nano metals,” MEXT Japan (No 25102710) and Research and Innovation for Indonesia Research Fund Program (RIIM) No. B811/II.7.5/FR/6/2022 and B2103/III.2/HK.04.03/7/2022

    Improving hydro-formability of stainless steel tubes by tube channel pressing

    Get PDF
    © Published under licence by IOP Publishing Ltd. Tube channel pressing (TCP), which is one of the severe plastic deformation (SPD) technologies to refine grain size into submicron size for tubular materials, have been applied to ferritic stainless steel tubes for one pass, in order to alleviate ridging and enhance the hydro-formability. It was found that grain-scale shear bands were introduced by one-pass TCP, and texture and microstructure was successfully modified by promoting recrystallization of deformation microstructure, which is otherwise hard-to-recrystallize, in the post-TCP annealing. Elongation to failure, strain-hardening exponent (n-value) and Lankford values of both longitudinal and circumferential directions increased in comparison to with the tube fabricated by conventional process.Japan Science and Technology Agency (JST) matching planner program

    Transition of Dislocation Structures in Severe Plastic Deformation and Its Effect on Dissolution in Dislocation Etchant

    Get PDF
    © 2018 Muhammad Rifai et al. Transition of dislocation structures in ultrafine-grained copper processed by simple shear extrusion (SSE) and its effects on dissolution were manifested by simple immersion tests using a modified Livingston dislocation etchant, which attacks dislocations and grain boundaries selectively. The SSE process increased the internal strain evaluated by X-ray line broadening analysis until eight passes but decreased it with further extrusion until twelve passes. The weight loss in the immersion tests reflected the variation in the internal strain: namely, it increased until eight passes and then decreased with further extrusion to twelve passes. Taking our previous report on microstructural observation into account, it is suggested that variation in the internal strain is caused by both the variation in dislocation density and structural change of grain boundaries from equilibrium to nonequilibrium states or vice versa. Decreased dislocation density and structural change back to equilibrium state of grain boundaries in very high strain range by possibly dynamic recovery as pointed out by Dalla Torre were validated by X-ray and dissolution in the modified Livingston etchant in addition to the direct observation by TEM reported in our former report

    Role of strain reversal in microstructure and texture of pure al during non-monotonic simple shear straining

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Dyestuff is one of the most widely released pollutants into the environment. Many approaches have been considered to deal with the dye removal from polluted water such as adsorption, ultrafiltration, osmosis, solvent extraction and photocatalytic degradation. The photocatalytic degradation process is one of the most beneficial, economical and environmentally friendly ways to degrade the organic pollutants from wastewater. In this study, an efficient ferrite-based photocatalyst, AgFeO2/rGO/TiO2 was successfully developed using simple deposition and reflux method. Physical, chemical and structural properties were analyzed by using XRD, FTIR Raman and PL spectroscopy. The efficiency of photocatalyst was investigated for the decolorization of methyl blue (MB) dye and activity was measured through UV-vis spectroscopy. The effect of parameters like pH, concentrations of MB dye, and loading of silver ferrite (AgFeO2) was investigated. The study depicted that the properties of TiO2 were improved due to addition of silver ferrite and reduced graphene oxide (rGO). The 2.5% AgFeO2/rGO/TiO2 exhibited the highest efficiency and completely degraded the 50 ppm of MB dye in 30 min. The parametric study revealed that dye decolorization is faster in a neutral solution than in basic and acidic medium. The higher performance of the photocatalyst was attributed to the reduced charge recombination and improved optical properties. Thus, AgFeO2/rGO/TiO2 can be a potential composite for photocatalytic dye degradation and other photocatalytic applications under UV-Visible light irradiations

    On the Production of Severely Deformed Workpieces in Large Scales: A Step Towards Industrialization

    Get PDF
    © 2019, The Author(s). Improvement of the functional properties of aluminium and its alloys by grain refinement is an effective way to increase their applications. The capability of severe plastic deformation methods to produce ultrafine-grained materials has been well established. However, their industrial application is limited because of the required additional equipment and limitation of the product size. Due to the direct extrusion characteristic of the simple shear extrusion (SSE) method and consequently the minimal additional tools and expenses, SSE is a good candidate for commercialization. The aim of this research is to scale up the SSE products to facilitate their potential use in practical applications. To overcome the limitation on the length of the plunger and reduce the load of the SSE process, a design is proposed in the current research. Microstructural investigations and mechanical tests of commercial pure aluminium (AA1050) workpieces confirm the effectiveness of the proposed design on the grain refinement and its capability to reduce the processing load
    corecore