81 research outputs found

    ASSOCIATION OF THE ALKALINE PHOSPHATASE OF RABBIT POLYMORPHONUCLEAR LEUKOCYTES WITH THE MEMBRANE OF THE SPECIFIC GRANULES

    Get PDF
    The localization of alkaline phosphatase in the specific granules of rabbit polymorphonuclear leukocytes was investigated. The results obtained suggest very strongly that alkaline phosphatase is a component of the granule membrane. The enzyme remains attached to the membrane upon disruption of the granules by the use of detergents or by hypotonic shock and subsequent extraction with sodium sulfate, and can be isolated together with fragments of the granule membrane by isopycnic equilibration. Treatment of the granules with high amounts of Triton-X-100, sodium deoxycholate, or hexadecyltrimethylammonium bromide releases the enzyme in soluble form. In polymorphonuclear leukocyte homogenates, lysis of the granules is needed in order to render alkaline phosphatase fully accessible to substrates. This suggests that the catalytic site of the enzyme is exposed at the inner face of the granule membrane

    Blocking Chemokine Receptors

    Get PDF

    STUDIES ON ISOLATED MEMBRANES OF AZUROPHIL AND SPECIFIC GRANULES FROM RABBIT POLYMORPHONUCLEAR LEUKOCYTES

    Get PDF
    Membranes were prepared from rabbit polymorphonuclear leukocyte azurophil and specific granules separated by zonal differential centrifugation. The two types of granule membranes were quite similar in ultrastructural appearance, but they showed distinct differences in cholesterol-phospholipid ratios and in protein components demonstrable in polyacrylamide gels

    FURTHER BIOCHEMICAL AND MORPHOLOGICAL STUDIES OF GRANULE FRACTIONS FROM RABBIT HETEROPHIL LEUKOCYTES

    Get PDF
    Fractionation of rabbit heterophil leukocyte homogenates by isopycnic centrifugation as well as by zonal sedimentation has helped to characterize further the particulate components of these cells. Four classes have been identified: (A) Large (0.5–0.8 µm) and dense (1.26) azurophil or primary granules, containing all the myeloperoxidase, one-third of the lysozyme, and a major proportion of the lysosomal acid hydrolase activities of the cells. (B) Smaller (0.25–0.40 µm) and less dense (1.23) specific or secondary granules, containing 90% of the alkaline phosphatase and the remainder of the lysozyme activities, but very little if any acid hydrolases. (C) Particles of low density (1.20), containing the remainder of the lysosomal acid hydrolases. This fraction was heterogeneous, but showed abundant small rod- or dumbbell-shaped particles of moderate electron opacity, surrounded by a single membrane (tertiary granules?). The possible origin of these lysosomes from contaminating macrophages could not be ruled out but appeared unlikely. (D) Slowly sedimenting material of very low density (1.14), made up of large, empty vesicular membrane structures, and containing 10% of the alkaline phosphatase, and all of a thiol-dependent acid p-nitrophenyl phosphatase, an enzyme clearly different from the lysosomal acid phosphatase

    RESOLUTION OF GRANULES FROM RABBIT HETEROPHIL LEUKOCYTES INTO DISTINCT POPULATIONS BY ZONAL SEDIMENTATION

    Get PDF
    Postnuclear supernates from homogenates of essentially pure rabbit heterophil leukocytes were fractionated by means of zonal differential centrifugation through a discontinuous sucrose gradient at various speeds. Three distinct groups of granules were characterized biochemically and morphologically. They were, in order of decreasing sedimentation coefficient: (a) Large, relatively dense granules, identified morphologically as the azurophil or primary granules, and containing essentially all of the myeloperoxidase activity of the preparations, about one-third of their lysozyme activity, and between 50 and 80% of their content in five acid hydrolases typically associated with lysosomes in other cells; (b) smaller, less dense granules, with the morphological appearance of the specific or secondary granules, and carrying most of the alkaline phosphatase and the remainder of the lysozyme activity of the preparations; (c) a second group of lysosome-like particles, associated with a morphologically heterogeneous fraction, and containing the remainder of the acid hydrolases, but little or no myeloperoxidase. When p-nitrophenyl phosphate was used instead of β-glycerophosphate for the assay of acid phosphatase, only small proportions of the total activity accompanied the two main lysosomal bands, and considerable activity was found in a zone slightly retarded with respect to the slowly moving band of acid hydrolases

    RESOLUTION OF THREE DISTINCT POPULATIONS OF NERVE ENDINGS FROM RAT BRAIN HOMOGENATES BY ZONAL ISOPYCNIC CENTRIFUGATION

    Get PDF
    Conditions have been established for the fractionation of subcellular components of rat forebrain homogenates by zonal isopycnic equilibration in continuous sucrose density gradients using a B-XIV rotor. The fractions were analyzed biochemically and by ultra-structural morphometry. Starting from postnuclear supernates of forebrain homogenates, it has been possible to resolve three distinct populations of nerve endings from one another, as well as from free mitochondria and myelin fragments. The three types of nerve endings differ in their apparent specific gravity, their biochemical properties, and their ability selectively to accumulate exogenous transmitter substances in vitro. These three particle populations are likely to represent, in order of increasing modal equilibrium density, (a) cholinergic nerve endings, characterized by their high content of acetylcholine, (b) Îł-amino butyric acid (GABA)-containing nerve endings with high glutamate decarboxylase activity and the ability to accumulate exogenous GABA, (c) adrenergic nerve endings that accumulate exogenous dopamine and noradrenaline and exhibit high monoamine oxidase activity

    CYTOCHEMICAL LOCALIZATION OF ACID PHOSPHATASE ACTIVITY IN GRANULE FRACTIONS FROM RABBIT POLYMORPHONUCLEAR LEUKOCYTES

    Get PDF
    When rabbit peritoneal exudates (97% polymorphonuclear [PMN] leukocytes, 2% mononuclear cells) were fractionated by zonal sedimentation or isopycnic centrifugation, four fractions (A, B, C, and D) were obtained, as reported earlier. "A" consisted largely of PMN azurophil granules, "B" of PMN specific granules, and "D" of membranous elements. The source of the more heterogeneous "C" fraction (containing acid hydrolases) was uncertain. To gain further information on the nature of this fraction, cytochemical tests for acid phosphatase (AcPase) were carried out on the starting cells and on the fractions. In intact PMN, lead phosphate reaction product was found in Golgi complexes, perinuclear cisternae, and some azurophil granules (immature forms or disrupted mature forms) of a few cells. The specifics and the intact azurophils were not reactive. Reaction product was also found within Golgi cisternae, secondary lysosomes, and some of the azurophil granules of mononuclear cells. Observations on the A and B fractions confirmed those in situ regarding the localization of reaction product in disrupted PMN azurophils, its absence from specifics, and the latency of the enzyme activity in intact azurophils. In the C fraction, AcPase was found in three structures (a) Golgi cisternae, (b) dense bodies, and (c) small pleomorphic granules Comparison with the starting cells indicates that the Golgi complexes are probably derived from both PMN leukocytes and mononuclear cells, whereas the remaining elements resemble (in size, shape, and density) secondary lysosomes and azurophil granules of mononuclear cells. The results indicate that the bulk of the cytochemically detectable AcPase present in the C fraction is derived from mononuclear cells, rather than from PMN leukocyte

    HIV-specific T Cell Cytotoxicity Mediated by RANTES Via the Chemokine Receptor CCR3

    Get PDF
    CC chemokines produced by CD8+ T cells are known to act as HIV-suppressive factors. We studied the possible role of these chemokines in HIV-1–specific killing of target cells. We found that the activity of cytotoxic T lymphocytes (CTLs) in CTL lines or freshly isolated peripheral blood mononuclear cells from HIV-1–infected individuals is markedly enhanced by RANTES (regulated on activation, normal T cell expressed and secreted) and virtually abolished by an antibody neutralizing RANTES or the RANTES receptor antagonist RANTES(9-68). Lysis was mediated by CD8+ major histocompatibility complex class I–restricted T cells and was obtained with target cells expressing epitopes of the HIV-1LAI proteins Gag, Pol, Env, and Nef. The cytolytic activity observed in the presence or absence of added RANTES could be abolished by pretreatment of the CTLs with pertussis toxin, indicating that the effect is mediated by a G protein–coupled receptor. The chemokines monocyte chemotactic protein (MCP)-3, MCP-4, and eotaxin acted like RANTES, whereas macrophage inflammatory protein (MIP)-1α, MIP-1β, MCP-1, and stromal cell–derived factor 1 were inactive, suggesting a role for the eotaxin receptor, CCR3, and ruling out the involvement of CCR1, CCR2, CCR5, and CXCR4. CTL activity was abrogated by an antibody that blocks CCR3, further indicating that specific lysis is triggered via this chemokine receptor. These observations reveal a novel mechanism for the induction of HIV-1–specific cytotoxicity that depends on RANTES acting via CCR3

    Eotaxin-2, a Novel CC Chemokine that Is Selective for the Chemokine Receptor CCR3, and Acts Like Eotaxin on Human Eosinophil and Basophil Leukocytes

    Get PDF
    A novel human CC chemokine consisting of 78 amino acids and having a molecular mass of 8,778.3 daltons (VVIPSPCCMF FVSKRIPENR VVSYQLSSRS TCLKAGVIFT TKKGQQ SCGD PKQEWVQRYM KNLDAKQKKA SPRARAVA) was isolated together with three minor COOH-terminally truncated variants with 73, 75, and 76 residues. The new chemokine was termed eotaxin-2 because it is functionally very similar to eotaxin. In terms of structure, however, eotaxin and eotaxin-2 are rather distant, they share only 39% identical amino acids and differ almost completely in the NH2-terminal region. Eotaxin-2 induced chemotaxis of eosinophils as well as basophils, with a typically bimodal concentration dependence, and the release of histamine and leukotriene C4 from basophils that had been primed with IL-3. In all assays, eotaxin-2 had the same efficacy as eotaxin, but was somewhat less potent. The migration and the release responses were abrogated in the presence of a monoclonal antibody that selectively blocks the eotaxin receptor, CCR3, indicating that eotaxin-2, like eotaxin, acts exclusively via CCR3. Receptor usage was also studied in desensitization experiments by measuring [Ca2+]i changes in eosinophils. Complete cross-desensitization was observed between eotaxin-2, eotaxin and MCP-4 confirming activation via CCR3. No Ca2+ mobilization was obtained in neutrophils, monocytes and lymphocytes, in agreement with the lack of chemotactic responsiveness. Intradermal injection of eotaxin-2 in a rhesus monkey (100 or 1,000 pmol per site) induced a marked local infiltration of eosinophils, which was most pronounced in the vicinity of postcapillary venules and was comparable to the effect of eotaxin

    B Cell–attracting Chemokine 1, a Human CXC Chemokine Expressed in Lymphoid Tissues, Selectively Attracts B Lymphocytes via BLR1/CXCR5

    Get PDF
    Although most leukocytes, T lymphocytes in particular, respond to several different chemokines, there is virtually no information on chemokine activities and chemokine receptors in B lymphocytes. A putative chemokine receptor, BLR1, that is expressed in Burkitt's lymphoma cells and B lymphocytes was cloned a few years ago. Deletion of the gene for BLR1 yielded mice with abnormal primary follicles and germinal centers of the spleen and Peyer's patches, reflecting the inability of B lymphocytes to migrate into B cell areas. By screening expressed sequence tag DNA sequences, we have identified a CXC chemokine, termed B cell–attracting chemokine 1 (BCA-1), that is chemotactic for human B lymphocytes. BCA-1 cDNA encodes a protein of 109 amino acids with a leader sequence of 22 residues. The mature protein shares 23–34% identical amino acids with known CXC chemokines and is constitutively expressed in secondary lymphoid organs. BCA-1 was chemically synthesized and tested for activity on murine pre–B cells 300-19 transfected with BLR1 and on human blood B lymphocytes. In transfected cells, BCA-1 induced chemotaxis and Ca2+ mobilization demonstrating that it acts via BLR1. Under the same conditions, no activity was obtained with 10 CXC and 19 CC chemokines, lymphotactin, neurotactin/fractalkine and several other peptide ligands. BCA-1 was also a highly effective attractant for human blood B lymphocytes (which express BLR1), but was inactive on freshly isolated or IL-2–stimulated T lymphocytes, monocytes, and neutrophils. In agreement with the nomenclature rules for chemokine receptors, we propose the term CXCR5 for BLR1. Together with the observed disturbance of B cell colonization in BLR1/ CXCR5-deficient mice, the present results indicate that chemotactic recruitment by locally produced BCA-1 is important for the development of B cell areas of secondary lymphoid tissues
    • …
    corecore