224 research outputs found

    THE EFFECTS OF A TRAINING PACKAGE ON THE USE OF INCLUSIVE TEACHER BEHAVIORS IN A SUNDAY SCHOOL CLASS

    Get PDF
    The purpose of the study was to provide training and follow-up sessions for Sunday school teachers to increase the use of inclusive teacher behaviors (opportunities to respond, behavior specific praise, and opportunities to participate) for educating a child with moderate to severe disability. A multiple baseline across behaviors design was used to evaluate the effectiveness of training and follow-up sessions for a Sunday school teacher that had a child with moderate to severe disability in her class. The results showed training and follow-up were effective in teaching inclusive teacher behaviors within a church setting

    Attenuated increase in maximal force of rat medial gastrocnemius muscle after concurrent peak power and endurance training

    Get PDF
    Improvement of muscle peak power and oxidative capacity are generally presumed to be mutually exclusive. However, this may not be valid by using fibre type-specific recruitment. Since rat medial gastrocnemius muscle (GM) is composed of high and low oxidative compartments which are recruited task specifically, we hypothesised that the adaptive responses to peak power training were unaffected by additional endurance training. Thirty rats were subjected to either no training (control), peak power training (PT), or both peak power and endurance training (PET), which was performed on a treadmill 5 days per week for 6 weeks. Maximal running velocity increased 13.5% throughout the training and was similar in both training groups. Only after PT, GM maximal force was 10% higher than that of the control group. In the low oxidative compartment, mRNA levels of myostatin and MuRF-1 were higher after PT as compared to those of control and PET groups, respectively. Phospho-S6 ribosomal protein levels remained unchanged, suggesting that the elevated myostatin levels after PT did not inhibit mTOR signalling. In conclusion, even by using task-specific recruitment of the compartmentalized rat GM, additional endurance training interfered with the adaptive response of peak power training and attenuated the increase in maximal force after power training

    Alpha-foetoprotein and carcinoembryonic antigen in germ cell neoplasms.

    Get PDF
    Serum alpha-foetoprotein (AFP) and serum carcinoembryonic antigen (CEA) levels were measured, serially whenever possible, in 70 patients attending the Institute of Radiotherapy, Rotterdam, on account of testicular (65) or ovarian (4) germ cell tumours or, in one case, an endodermal sinus (yolk sac) tumour in the mediastinum. In 15 patients the disease was active; in the others it was in remission. Patients with active disease had raised serum AFP levels which correlated well with disease activity; no patient without evidence of active disease had raised serum AFP levels. None of the patients with active disease was found to have raised serum CEA levels. There was no correlation between serum AFP and CEA levels in patients with germ cell neoplasms, but good correlation between serum AFP levels and disease activity. Serum CEA levels did not correlate with disease activity, and serial determinations would therefore not be useful in monitoring progress in this group of diseases

    Ethylene Receptors, CTRs and EIN2 Target Protein Identification and Quantification Through Parallel Reaction Monitoring During Tomato Fruit Ripening.

    Get PDF
    Ethylene, the plant ripening hormone of climacteric fruit, is perceived by ethylene receptors which is the first step in the complex ethylene signal transduction pathway. Much progress has been made in elucidating the mechanism of this pathway, but there is still a lot to be done in the proteomic quantification of the main proteins involved, particularly during fruit ripening. This work focuses on the mass spectrometry based identification and quantification of the ethylene receptors (ETRs) and the downstream components of the pathway, CTR-like proteins (CTRs) and ETHYLENE INSENSITIVE 2 (EIN2). We used tomato as a model fruit to study changes in protein abundance involved in the ethylene signal transduction during fruit ripening. In order to detect and quantify these low abundant proteins located in the membrane of the endoplasmic reticulum, we developed a workflow comprising sample fractionation and MS analysis using parallel reaction monitoring. This work shows the feasibility of the identification and absolute quantification of all seven ethylene receptors, three out of four CTRs and EIN2 in four ripening stages of tomato. In parallel, gene expression was analyzed through real-time qPCR. Correlation between transcriptomic and proteomic profiles during ripening was only observed for three of the studied proteins, suggesting that the other signaling proteins are likely post-transcriptionally regulated. Based on our quantification results we were able to show that the protein levels of SlETR3 and SlETR4 increased during ripening, probably to control ethylene sensitivity. The other receptors and CTRs showed either stable levels that could sustain, or decreasing levels that could promote fruit ripening

    Mapping Peptidergic Cells in Drosophila: Where DIMM Fits In

    Get PDF
    The bHLH transcription factor DIMMED has been associated with the differentiation of peptidergic cells in Drosophila. However, whether all Drosophila peptidergic cells express DIMM, and the extent to which all DIMM cells are peptidergic, have not been determined. To address these issues, we have mapped DIMM expression in the central nervous system (CNS) and periphery in the late larval stage Drosophila. At 100 hr after egg-laying, DIMM immunosignals are largely congruent with a dimm-promoter reporter (c929-GAL4) and they present a stereotyped pattern of 306 CNS cells and 52 peripheral cells. We assigned positional values for all DIMM CNS cells with respect to reference gene expression patterns, or to patterns of secondary neuroblast lineages. We could assign provisional peptide identities to 68% of DIMM-expressing CNS cells (207/306) and to 73% of DIMM-expressing peripheral cells (38/52) using a panel of 24 markers for Drosophila neuropeptide genes. Furthermore, we found that DIMM co-expression was a prevalent feature within single neuropeptide marker expression patterns. Of the 24 CNS neuropeptide gene patterns we studied, six patterns are >90% DIMM-positive, while 16 of 22 patterns are >40% DIMM-positive. Thus most or all DIMM cells in Drosophila appear to be peptidergic, and many but not all peptidergic cells express DIMM. The co-incidence of DIMM-expression among peptidergic cells is best explained by a hypothesis that DIMM promotes a specific neurosecretory phenotype we term LEAP. LEAP denotes Large cells that display Episodic release of Amidated Peptides

    Genome-Wide Analyses Reveal a Role for Peptide Hormones in Planarian Germline Development

    Get PDF
    Genomic/peptidomic analyses of the planarian Schmidtea mediterranea identifies >200 neuropeptides and uncovers a conserved neuropeptide required for proper maturation and maintenance of the reproductive system

    Quantitative Measurements of Cell−Cell Signaling Peptides with Single-Cell MALDI MS

    Get PDF
    Cell-to-cell signaling peptides play important roles in neurotransmission, neuromodulation, and hormonal signaling. Significant progress has been achieved in qualitative investigations of signaling peptides in the nervous system using single cell matrix-assisted laser desorption/ionization mass spectrometry. However, quantitative information about signaling peptides is difficult to obtain with this approach because only small amounts of analytes are available for analysis. Here we describe several methods for quantitative microanalysis of peptides in individual Aplysia californica neurons and small pieces of tissue. Stable isotope labeling with d0- and d4-succinic anhydride and iTRAQ reagents has been successfully adopted for relative quantitation of nanoliter volume samples containing the Aplysia insulin Cβ peptide. Comparative analysis of the Cβ peptide release site, the upper labial nerve, and its synthesis location, the F- and C-clusters, shows that the release site possesses almost three times more of this compound. The method of standard addition permits absolute quantitation of the physiologically active neuropeptide cerebrin from small structures, including nerves and neuronal clusters, in the femtomole range with a limit of detection of 19 fmol. The simplicity of these methods and the commercial availability of the reagents allow quantitative measurements from a variety of small-volume biological samples

    Classification and function of small open reading frames

    Get PDF
    Small open reading frames (smORFs) of 100 codons or fewer are usually - if arbitrarily - excluded from proteome annotations. Despite this, the genomes of many metazoans, including humans, contain millions of smORFs, some of which fulfil key physiological functions. Recently, the transcriptome of Drosophila melanogaster was shown to contain thousands of smORFs of different classes that actively undergo translation, which produces peptides of mostly unknown function. Here, we present a comprehensive analysis of smORFs in flies, mice and humans. We propose the existence of several functional classes of smORFs, ranging from inert DNA sequences to transcribed and translated cis-regulators of translation and peptides with a propensity to function as regulators of membrane-associated proteins, or as components of ancient protein complexes in the cytoplasm. We suggest that the different smORF classes could represent steps in gene, peptide and protein evolution. Our analysis introduces a distinction between different peptide-coding classes of smORFs in animal genomes, and highlights the role of model organisms for the study of small peptide biology in the context of development, physiology and human disease

    A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insect neuropeptides are distributed in stereotypic sets of neurons that commonly constitute a small fraction of the total number of neurons. However, some neuropeptide genes are expressed in larger numbers of neurons of diverse types suggesting that they are involved in a greater diversity of functions. One of these widely expressed genes, <it>snpf</it>, encodes the precursor of short neuropeptide F (sNPF). To unravel possible functional diversity we have mapped the distribution of transcript of the <it>snpf </it>gene and its peptide products in the central nervous system (CNS) of <it>Drosophila </it>in relation to other neuronal markers.</p> <p>Results</p> <p>There are several hundreds of neurons in the larval CNS and several thousands in the adult <it>Drosophila </it>brain expressing <it>snpf </it>transcript and sNPF peptide. Most of these neurons are intrinsic interneurons of the mushroom bodies. Additionally, sNPF is expressed in numerous small interneurons of the CNS, olfactory receptor neurons (ORNs) of the antennae, and in a small set of possibly neurosecretory cells innervating the corpora cardiaca and aorta. A sNPF-Gal4 line confirms most of the expression pattern. None of the sNPF immunoreactive neurons co-express a marker for the transcription factor DIMMED, suggesting that the majority are not neurosecretory cells or large interneurons involved in episodic bulk transmission. Instead a portion of the sNPF producing neurons co-express markers for classical neurotransmitters such as acetylcholine, GABA and glutamate, suggesting that sNPF is a co-transmitter or local neuromodulator in ORNs and many interneurons. Interestingly, sNPF is coexpressed both with presumed excitatory and inhibitory neurotransmitters. A few sNPF expressing neurons in the brain colocalize the peptide corazonin and a pair of dorsal neurons in the first abdominal neuromere coexpresses sNPF and insulin-like peptide 7 (ILP7).</p> <p>Conclusion</p> <p>It is likely that sNPF has multiple functions as neurohormone as well as local neuromodulator/co-transmitter in various CNS circuits, including olfactory circuits both at the level of the first synapse and at the mushroom body output level. Some of the sNPF immunoreactive axons terminate in close proximity to neurosecretory cells producing ILPs and adipokinetic hormone, indicating that sNPF also might regulate hormone production or release.</p
    • …
    corecore