30 research outputs found
Influence of pain location and hand dominance on scapular kinematics and EMG activities: an exploratory study
<p>Abstract</p> <p>Background</p> <p>Assessment of three-dimensional kinematics and electromyography (EMG) activities is common in patients with chronic neck pain. However, the effect of hand dominance and neck pain location on the measurement of movement and EMG characteristics is still unclear. Therefore, the purpose of this study was to investigate the effect of neck pain location and arm dominance on the scapular kinematics and muscle EMG activities in patients with chronic neck pain.</p> <p>Methods</p> <p>Thirty subjects (10 males, 20 females; mean age (sd): 38 (11.9) years) with chronic neck pain for more than 3 months were recruited. The scapular kinematics and EMG activity of the upper trapezius and sternocleidomastoid muscles were measured during the bilateral arm elevation task. The three-way repeated measures ANOVA was used to examine the effect of neck pain location and hand dominance on the measurement of kinematics and EMG muscle activities.</p> <p>Results</p> <p>The movement of scapular posterior tilt was significantly influenced by arm dominance (P = 0.001) and by the interaction of arm dominance and elevation angle (P = 0.002). The movement of scapular upward/downward rotation was affected by the interaction of arm dominance and elevation angle (P = 0.02). The location of pain did not show any significant influence on the scapular movement and muscle activities.</p> <p>Conclusions</p> <p>Hand dominance could have an influence on the scapular kinematics, which should be taken into consideration when describing and comparing neuromuscular characteristics in individuals with chronic neck pain.</p
The Proprioceptive Map of the Arm Is Systematic and Stable, but Idiosyncratic
Visual and somatosensory signals participate together in providing an estimate of the hand's spatial location. While the ability of subjects to identify the spatial location of their hand based on visual and proprioceptive signals has previously been characterized, relatively few studies have examined in detail the spatial structure of the proprioceptive map of the arm. Here, we reconstructed and analyzed the spatial structure of the estimation errors that resulted when subjects reported the location of their unseen hand across a 2D horizontal workspace. Hand position estimation was mapped under four conditions: with and without tactile feedback, and with the right and left hands. In the task, we moved each subject's hand to one of 100 targets in the workspace while their eyes were closed. Then, we either a) applied tactile stimulation to the fingertip by allowing the index finger to touch the target or b) as a control, hovered the fingertip 2 cm above the target. After returning the hand to a neutral position, subjects opened their eyes to verbally report where their fingertip had been. We measured and analyzed both the direction and magnitude of the resulting estimation errors. Tactile feedback reduced the magnitude of these estimation errors, but did not change their overall structure. In addition, the spatial structure of these errors was idiosyncratic: each subject had a unique pattern of errors that was stable between hands and over time. Finally, we found that at the population level the magnitude of the estimation errors had a characteristic distribution over the workspace: errors were smallest closer to the body. The stability of estimation errors across conditions and time suggests the brain constructs a proprioceptive map that is reliable, even if it is not necessarily accurate. The idiosyncrasy across subjects emphasizes that each individual constructs a map that is unique to their own experiences
Ipsilesional trajectory control is related to contralesional arm paralysis after left hemisphere damage
We have recently shown ipsilateral dynamic deficits in trajectory control are present in left hemisphere damaged (LHD) patients with paresis, as evidenced by impaired modulation of torque amplitude as response amplitude increases. The purpose of the current study is to determine if these ipsilateral deficits are more common with contralateral hemiparesis and greater damage to the motor system, as evidenced by structural imaging. Three groups of right-handed subjects (healthy controls, LHD stroke patients with and without upper extremity paresis) performed single-joint elbow movements of varying amplitudes with their left arm in the left hemispace. Only the paretic group demonstrated dynamic deficits characterized by decreased modulation of peak torque (reflected by peak acceleration changes) as response amplitude increased. These results could not be attributed to lesion volume or peak velocity as neither variable differed across the groups. However, the paretic group had damage to a larger number of areas within the motor system than the non-paretic group suggesting that such damage increases the probability of ipsilesional deficits in dynamic control for modulating torque amplitude after left hemisphere damage
Upper limb asymmetries in the utilization of proprioceptive feedback
Despite the importance of proprioception during upper limb movement, the extent to which arm/hemisphere asymmetries exist in the utilization of proprioceptive feedback remains unclear. In the present study, movement accuracy and arm dynamics were examined in 20 right-handed adults during a proprioceptive matching task that required subjects to actively match remembered target positions of the elbow with the contralateral arm. As hypothesized, the results indicated an accuracy advantage in favor of the non-preferred left arm reflected by smaller absolute matching errors when compared to the preferred right arm. This advantage was most pronounced for larger amplitude movements and was not associated with any limb-specific difference in movement strategy as indicated by the dynamics of the matching movement. These results extend current theories of handedness by demonstrating that, in right-handed individuals, the non-preferred arm/hemisphere system is more adept at utilizing position-related proprioceptive information than the preferred arm/hemisphere system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46546/1/221_2005_Article_280.pd
The Role of Motor Learning in Spatial Adaptation near a Tool
Some visual-tactile (bimodal) cells have visual receptive fields (vRFs) that overlap and extend moderately beyond the skin of the hand. Neurophysiological evidence suggests, however, that a vRF will grow to encompass a hand-held tool following active tool use but not after passive holding. Why does active tool use, and not passive holding, lead to spatial adaptation near a tool? We asked whether spatial adaptation could be the result of motor or visual experience with the tool, and we distinguished between these alternatives by isolating motor from visual experience with the tool. Participants learned to use a novel, weighted tool. The active training group received both motor and visual experience with the tool, the passive training group received visual experience with the tool, but no motor experience, and finally, a no-training control group received neither visual nor motor experience using the tool. After training, we used a cueing paradigm to measure how quickly participants detected targets, varying whether the tool was placed near or far from the target display. Only the active training group detected targets more quickly when the tool was placed near, rather than far, from the target display. This effect of tool location was not present for either the passive-training or control groups. These results suggest that motor learning influences how visual space around the tool is represented