62 research outputs found
Strong light-matter coupling: parametric interactions in a cavity and free-space
We consider parametric interactions of laser pulses in a coherent macroscopic
ensemble of resonant atoms, which are possible in the strong coupling regime of
light-matter interaction. The spectrum condensation (lasing at collective
vacuum Rabi sidebands) was studied in an active cavity configuration.
Parametric interactions under the strong light-matter coupling were proved even
in free space. In contrast to bichromatic beats in a cavity, they were shown to
appear due to interference between polaritonic wave packets of different group
velocities.Comment: 4 pages, 2 figure
Observation of Large Atomic-Recoil Induced Asymmetries in Cold Atom Spectroscopy
The atomic recoil effect leads to large (25 %) asymmetries in simple
spectroscopic investigations of Ca atoms that have been laser-cooled to 10
microkelvin. Starting with spectra from the more familiar Doppler-broadened
domain, we show how the fundamental asymmetry between absorption and stimulated
emission of light manifests itself when shorter spectroscopic pulses lead to
the Fourier transform regime. These effects occur on frequency scales much
larger than the size of the recoil shift itself, and have not been observed
before in saturation spectroscopy. These results are relevant to
state-of-the-art optical atomic clocks based on freely expanding neutral atoms.Comment: 4 pages, 3 figure
Atomic clocks with suppressed blackbody radiation shift
We develop a nonstandard concept of atomic clocks where the blackbody
radiation shift (BBRS) and its temperature fluctuations can be dramatically
suppressed (by one to three orders of magnitude) independent of the
environmental temperature. The suppression is based on the fact that in a
system with two accessible clock transitions (with frequencies v1 and v2) which
are exposed to the same thermal environment, there exists a "synthetic"
frequency v_{syn} (v1-e12 v2) largely immune to the BBRS. As an example, it is
shown that in the case of ion 171Yb+ it is possible to create a clock in which
the BBRS can be suppressed to the fractional level of 10^{-18} in a broad
interval near room temperature (300\pm 15 K). We also propose a realization of
our method with the use of an optical frequency comb generator stabilized to
both frequencies v1 and v2. Here the frequency v_{syn} is generated as one of
the components of the comb spectrum and can be used as an atomic standard.Comment: 5 pages, 2 figure
Paraffin coated rubidium cell with an internal atomic vapor source
We present the results of a study on relaxation and diffusion processes of
rubidium atoms in a rubidium cell with an internal vapor source. The cell is an
evacuated glass bulb, which is characterized in that the source of atomic
vapors in the form of a metal film Rb is evenly distributed throughout the
inner surface of the bulb, and the paraffin film is uniformly distributed over
the entire area and over the metal surface. By using laser optical pumping, we
performed measurements of the relaxation time and the average number of bounces
of optical pumped rubidium atoms in the bulb. We have measured the adsorption
time of rubidium atoms by paraffin coating and rubidium atoms diffusion
coefficient in paraffin used. A simple model of the pumping and atomic
diffusion processes in the cell is discussed as well.Comment: 10 pages, 6 figure
Zeeman slowers made simple with permanent magnets in a Halbach configuration
We describe a simple Zeeman slower design using permanent magnets. Contrary
to common wire-wound setups no electric power and water cooling are required.
In addition, the whole system can be assembled and disassembled at will. The
magnetic field is however transverse to the atomic motion and an extra repumper
laser is necessary. A Halbach configuration of the magnets produces a high
quality magnetic field and no further adjustment is needed. After optimization
of the laser parameters, the apparatus produces an intense beam of slow and
cold 87Rb atoms. With a typical flux of 1 - 5 \times 10^10 atoms/s at 30 ms^-1,
our apparatus efficiently loads a large magneto-optical trap with more than
10^10 atoms in one second, which is an ideal starting point for degenerate
quantum gases experiments.Comment: 8+6 pages (article + appendices: calculation details, probe and oven
description, pictures), 18 figures, supplementary material (movie,
Mathematica programs and technical drawings
Coherent interaction of laser pulses in a resonant optically dense extended medium under the regime of strong field-matter coupling
Nonstationary pump-probe interaction between short laser pulses propagating
in a resonant optically dense coherent medium is considered. A special
attention is paid to the case, where the density of two-level particles is high
enough that a considerable part of the energy of relatively weak external
laser-fields can be coherently absorbed and reemitted by the medium. Thus, the
field of medium reaction plays a key role in the interaction processes, which
leads to the collective behavior of an atomic ensemble in the strongly coupled
light-matter system. Such behavior results in the fast excitation interchanges
between the field and a medium in the form of the optical ringing, which is
analogous to polariton beating in the solid-state optics. This collective
oscillating response, which can be treated as successive beats between light
wave-packets of different group velocities, is shown to significantly affect
propagation and amplification of the probe field under its nonlinear
interaction with a nearly copropagating pump pulse. Depending on the probe-pump
time delay, the probe transmission spectra show the appearance of either
specific doublet or coherent dip. The widths of these features are determined
by the density-dependent field-matter coupling coefficient and increase during
the propagation. Besides that, the widths of the coherent features, which
appear close to the resonance in the broadband probe-spectrum, exceed the
absorption-line width, since, under the strong-coupling regime, the frequency
of the optical ringing exceeds the rate of incoherent relaxation. Contrary to
the stationary strong-field effects, the density- and coordinate-dependent
transmission spectra of the probe manifest the importance of the collective
oscillations and cannot be obtained in the framework of the single-atom model.Comment: 10 pages, 8 figures, to be published in Phys. Rev.
All-Optical Switching Demonstration using Two-Photon Absorption and the Classical Zeno Effect
Low-contrast all-optical Zeno switching has been demonstrated in a silicon
nitride microdisk resonator coupled to a hot atomic vapor. The device is based
on the suppression of the field build-up within a microcavity due to
non-degenerate two-photon absorption. This experiment used one beam in a
resonator and one in free-space due to limitations related to device physics.
These results suggest that a similar scheme with both beams resonant in the
cavity would correspond to input power levels near 20 nW.Comment: 4 pages, 5 figure
Theory of nonlinear sub-Doppler laser spectroscopy taking into account atomic-motion-induced density-dependent effects in a gas
We develop a field-nonlinear theory of sub-Doppler spectroscopy in a gas of
two-level atoms, based on a self-consistent solution of the Maxwell-Bloch
equations in the mean field and single-atom density matrix approximations. This
makes it possible to correctly take into account the effects caused by the free
motion of atoms in a gas, which lead to a nonlinear dependence of the
spectroscopic signal on the atomic density even in the absent of a direct
interatomic interaction (e.g., dipole-dipole interaction). Within the framework
of this approach, analytical expressions for the light field were obtained for
an arbitrary number of resonant waves and arbitrary optical thickness of a gas
medium. Sub-Doppler spectroscopy in the transmission signal for two
counterpropagating and co-propagating waves has been studied in detail. A
previously unknown red shift of a narrow sub-Doppler resonance is predicted in
a counterpropagating waves scheme, when the frequency of one wave is fixed and
the frequency of the other wave is varied. The magnitude of this shift depends
on the atomic density and can be more than an order of magnitude greater than
the known shift from the interatomic dipole-dipole interaction (Lorentz-Lorenz
shift). The found effects, caused by the free motion of atoms, require a
significant revision of the existing picture of spectroscopic effects depending
on the density of atoms in a gas. Apart of fundamental aspect, obtained results
are important for precision laser spectroscopy and optical atomic clocks.Comment: 18 pages, 12 figure
- …