18 research outputs found
Neuroanatomical Circuitry Associated with Exploratory Eye Movement in Schizophrenia: A Voxel-Based Morphometric Study
Schizophrenic patients present abnormalities in a variety of eye movement tasks. Exploratory eye movement (EEM) dysfunction appears to be particularly specific to schizophrenia. However, the underlying mechanisms of EEM dysfunction in schizophrenia are not clearly understood. To assess the potential neuroanatomical substrates of EEM, we recorded EEM performance and conducted a voxel-based morphometric analysis of gray matter in 33 schizophrenic patients and 29 well matched healthy controls. In schizophrenic patients, decreased responsive search score (RSS) and widespread gray matter density (GMD) reductions were observed. Moreover, the RSS was positively correlated with GMD in distributed brain regions in schizophrenic patients. Furthermore, in schizophrenic patients, some brain regions with neuroanatomical deficits overlapped with some ones associated with RSS. These brain regions constituted an occipito-tempro-frontal circuitry involved in visual information processing and eye movement control, including the left calcarine cortex [Brodmann area (BA) 17], the left cuneus (BA 18), the left superior occipital cortex (BA 18/19), the left superior frontal gyrus (BA 6), the left cerebellum, the right lingual cortex (BA 17/18), the right middle occipital cortex (BA19), the right inferior temporal cortex (BA 37), the right dorsolateral prefrontal cortex (BA 46) and bilateral precentral gyri (BA 6) extending to the frontal eye fields (FEF, BA 8). To our knowledge, we firstly reported empirical evidence that gray matter loss in the occipito-tempro-frontal neuroanatomical circuitry of visual processing system was associated with EEM performance in schizophrenia, which may be helpful for the future effort to reveal the underlying neural mechanisms for EEM disturbances in schizophrenia
Effects of the neurogranin variant rs12807809 on thalamocortical morphology in schizophrenia
10.1371/journal.pone.0085603PLoS ONE812-POLN
Comprehensive in vivo Mapping of the Human Basal Ganglia and Thalamic Connectome in Individuals Using 7T MRI
Basal ganglia circuits are affected in neurological disorders such as Parkinson's disease (PD), essential tremor, dystonia and Tourette syndrome. Understanding the structural and functional connectivity of these circuits is critical for elucidating the mechanisms of the movement and neuropsychiatric disorders, and is vital for developing new therapeutic strategies such as deep brain stimulation (DBS). Knowledge about the connectivity of the human basal ganglia and thalamus has rapidly evolved over recent years through non-invasive imaging techniques, but has remained incomplete because of insufficient resolution and sensitivity of these techniques. Here, we present an imaging and computational protocol designed to generate a comprehensive in vivo and subject-specific, three-dimensional model of the structure and connections of the human basal ganglia. High-resolution structural and functional magnetic resonance images were acquired with a 7-Tesla magnet. Capitalizing on the enhanced signal-to-noise ratio (SNR) and enriched contrast obtained at high-field MRI, detailed structural and connectivity representations of the human basal ganglia and thalamus were achieved. This unique combination of multiple imaging modalities enabled the in-vivo visualization of the individual human basal ganglia and thalamic nuclei, the reconstruction of seven white-matter pathways and their connectivity probability that, to date, have only been reported in animal studies, histologically, or group-averaged MRI population studies. Also described are subject-specific parcellations of the basal ganglia and thalamus into sub-territories based on their distinct connectivity patterns. These anatomical connectivity findings are supported by functional connectivity data derived from resting-state functional MRI (R-fMRI). This work demonstrates new capabilities for studying basal ganglia circuitry, and opens new avenues of investigation into the movement and neuropsychiatric disorders, in individual human subjects
A magnetization transfer analysis of the thalamus in schizophrenia
The authors investigated the thalamus in schizophrenia by using magnetization transfer ratio (MTR), a novel structural magnetic resonance technique sensitive to subtle neuropathological abnormalities. The dorsomedial nucleus (DMN) and pulvinar were selected because of their connections to limbic, prefrontal, and temporal regions, putatively relevant in schizophrenia. Volume (intracranial; thalamic) and MTR (whole thalamus; DMN; pulvinar) were determined in 25 patients with chronic schizophrenia by DSM-IV criteria and 25 control subjects. There were no significant differences between patients and control subjects in thalamic volume (corrected for intracranial volume) or MTR in whole thalamus, DMN, or pulvinar. No volumetric or MTR abnormalities could be detected in the thalamus of patients with schizophrenia. The findings suggest that abnormalities, if present, are very subtle and beyond the power of resolution of these techniques
Subcortical Biophysical Abnormalities in Patients with Mood Disorders
Cortical-subcortical circuits have been implicated in the pathophysiology of mood disorders. Structural and biochemical abnormalities have been identified in patients diagnosed with mood disorders using magnetic resonance imaging-related approaches. In this study, we used magnetization transfer (MT), an innovative magnetic resonance approach, to study biophysical changes in both gray and white matter regions in cortical-subcortical circuits implicated in emotional regulation and behavior. Our study samples comprised 28 patients clinically diagnosed with major depressive disorder (MDD) and 31 non-depressed subjects of comparable age and gender. MT ratio (MTR), representing the biophysical integrity of macromolecular proteins within key components of cortical-subcortical circuits-the caudate, thalamic, striatal, orbitofrontal, anterior cingulate and dorsolateral regions-was the primary outcome measure. In our study, the MTR in the head of the right caudate nucleus was significantly lower in the MDD group when compared with the comparison group. MTR values showed an inverse relationship with age in both groups, with more widespread relationships observed in the MDD group. These data indicate that focal biophysical abnormalities in the caudate nucleus may be central to the pathophysiology of depression and critical to the cortical-subcortical abnormalities that underlie mood disorders. Depression may also accentuate age-related changes in the biophysical properties of cortical and subcortical regions. These observations have broad implications for the neuronal circuitry underlying mood disorders across the lifespa