32 research outputs found
Nonequilibrium stochastic processes: Time dependence of entropy flux and entropy production
Based on the Fokker-Planck and the entropy balance equations we have studied
the relaxation of a dissipative dynamical system driven by external
Ornstein-Uhlenbeck noise processes in absence and presence of nonequilibrium
constraint in terms of the thermodynamically inspired quantities like entropy
flux and entropy production. The interplay of nonequilibrium constraint,
dissipation and noise reveals some interesting extremal nature in the time
dependence of entropy flux and entropy production.Comment: RevTex, 17 pages, 9 figures. To appear in Phys. Rev.
Fluctuation-dissipation relationship in chaotic dynamics
We consider a general N-degree-of-freedom dissipative system which admits of
chaotic behaviour. Based on a Fokker-Planck description associated with the
dynamics we establish that the drift and the diffusion coefficients can be
related through a set of stochastic parameters which characterize the steady
state of the dynamical system in a way similar to fluctuation-dissipation
relation in non-equilibrium statistical mechanics. The proposed relationship is
verified by numerical experiments on a driven double well system.Comment: Revtex, 23 pages, 2 figure
Environment-induced dynamical chaos
We examine the interplay of nonlinearity of a dynamical system and thermal
fluctuation of its environment in the ``physical limit'' of small damping and
slow diffusion in a semiclassical context and show that the trajectories of
c-number variables exhibit dynamical chaos due to the thermal fluctuations of
the bath.Comment: Revtex, 4 pages and 4 figure
Generalized quantum Fokker-Planck, diffusion and Smoluchowski equations with true probability distribution functions
Traditionally, the quantum Brownian motion is described by Fokker-Planck or
diffusion equations in terms of quasi-probability distribution functions, e.g.,
Wigner functions. These often become singular or negative in the full quantum
regime. In this paper a simple approach to non-Markovian theory of quantum
Brownian motion using {\it true probability distribution functions} is
presented. Based on an initial coherent state representation of the bath
oscillators and an equilibrium canonical distribution of the quantum mechanical
mean values of their co-ordinates and momenta we derive a generalized quantum
Langevin equation in -numbers and show that the latter is amenable to a
theoretical analysis in terms of the classical theory of non-Markovian
dynamics. The corresponding Fokker-Planck, diffusion and the Smoluchowski
equations are the {\it exact} quantum analogues of their classical
counterparts. The present work is {\it independent} of path integral
techniques. The theory as developed here is a natural extension of its
classical version and is valid for arbitrary temperature and friction
(Smoluchowski equation being considered in the overdamped limit).Comment: RevTex, 16 pages, 7 figures, To appear in Physical Review E (minor
revision
Case Report- Spontaneous rupture of urinary bladder in puerperium
We report a case of spontaneous rupture of urinary bladder during
normal vaginal delivery in a primigravida, who presented with huge
ascites, oliguria and renal failure 3 days after delivery. Abdominal
paracentesis and CT cystography diagnosed intraperitoneal rupture of
urinary bladder. The rent was repaired in layers. In the follow-up
cystoscopy and the cystography showed the lesion healed completely.
This is totally preventable condition if adequate precaution is taken
in the form of evacuating the bladder before the patient goes to second
stage of labour
Case Report - Recurrent rhinosporidiosis of male urethra
Rhinosporidiosis is a chronic granulomatous disease caused by a fungus,
Rhinisporidium seeberi . Though the favored site is the nasal
mucosa, urethral involvement does occur in this disease, only a few
cases are reported in the literature and they are mostly from India.
Here we report a case of recurrent urethral rhinosporidiosis,
presenting as a protruding mass from the urethral orifice during
voiding