206 research outputs found

    Mitochondria matter: Systemic aspects of nonalcoholic fatty liver disease (nafld) and diagnostic assessment of liver function by stable isotope dynamic breath tests

    Get PDF
    The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of β‐oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. β€œDynamic” liver function tests include the breath test (BT) based on the use of substrates marked with the non‐radioactive, naturally occurring stable isotope13C. Hepatocellular metabolization of the substrate will generate13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13 CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria.13 C‐BTs explore distinct chronic liver diseases including simple liver steatosis, non‐alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD,13C‐BT use substrates such as α‐ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease.13C‐BTs represent an indirect, cost‐effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of13C‐BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD

    Characterization of High-Fat, Diet-Induced, Non-alcoholic Steatohepatitis with Fibrosis in Rats

    Get PDF
    An ideal animal model is necessary for a clear understanding of the etiology, pathogenesis, and mechanisms of human non-alcoholic steatohepatitis (NASH) and for facilitating the design of effective therapy for this condition. We aimed to establish a rat model of NASH with fibrosis by using a high-fat diet (HFD). Male Sprague–Dawley (SD) rats were fed a HFD consisting of 88Β g normal diet, 10Β g lard oil, and 2Β g cholesterol. Control rats were fed normal diet. Rats were killed at 4, 8, 12, 16, 24, 36, and 48Β weeks after HFD exposure. Body weight, liver weight, and epididymal fat weight were measured. Serum levels of fasting glucose, triglyceride, cholesterol, alanine aminotransferase (ALT), free fatty acids (FFA), insulin, and tumor necrosis factor-alpha (TNF-Ξ±) were determined. Hepatic histology was examined by H&E stain. Hepatic fibrosis was assessed by VG stain and immunohistochemical staining for transforming growth factor beta 1 (TGF-Ξ²1), and alpha-smooth-muscle actin (Ξ±-SMA). The liver weight and liver index increased from week 4, when hepatic steatosis was also observed. By week 8, the body weight and epididymal fat weight started increasing, which was associated with increased serum levels of FFA, cholesterol, and TNF-Ξ±, as well as development of simple fatty liver. The serum ALT level increased from week 12. Steatohepatitis occurred from weeks 12 through 48. Apparent hepatic perisinosodial fibrosis did not occur until week 24, and progressed from week 36 to 48 with insulin resistance. Therefore, this novel model may be potentially useful in NASH study

    Negative regulation of signal transducer and activator of transcription-3 signalling cascade by lupeol inhibits growth and induces apoptosis in hepatocellular carcinoma cells

    Get PDF
    Background: Constitutive activation of signal transducer and activator of transcription signalling 3 (STAT3) has been linked with survival, proliferation and angiogenesis in a wide variety of malignancies including hepatocellular carcinoma (HCC). Methods: We evaluated the effect of lupeol on STAT3 signalling cascade and its regulated functional responses in HCC cells. Results: Lupeol suppressed constitutive activation of STAT3 phosphorylation at tyrosine 705 residue effectively in a dose- and time-dependent manner. The phosphorylation of Janus-activated kinases (JAKs) 1 and 2 and Src was also suppressed by lupeol. Pervanadate treatment reversed the downregulation of phospho-STAT3 induced by lupeol, thereby indicating the involvement of a phosphatase. Indeed, we observed that treatment with lupeol increased the protein and mRNA levels of SHP-2, and silencing of SHP-2 abolished the inhibitory effects of lupeol on STAT3 activation. Treatment with lupeol also downregulated the expression of diverse STAT3-regulated genes and decreased the binding of STAT3 to VEGF promoter. Moreover, the proliferation of various HCC cells was significantly suppressed by lupeol, being associated with substantial induction of apoptosis. Depletion of SHP-2 reversed the observed antiproliferative and pro-apoptotic effects of lupeol. Conclusions: Lupeol exhibited its potential anticancer effects in HCC through the downregulation of STAT3-induced pro-survival signalling cascade

    Loss of Regulator of G Protein Signaling 5 Exacerbates Obesity, Hepatic Steatosis, Inflammation and Insulin Resistance

    Get PDF
    BACKGROUND: The effect of regulator of G protein signaling 5 (RGS5) on cardiac hypertrophy, atherosclerosis and angiogenesis has been well demonstrated, but the role in the development of obesity and insulin resistance remains completely unknown. We determined the effect of RGS5 deficiency on obesity, hepatic steatosis, inflammation and insulin resistance in mice fed either a normal-chow diet (NC) or a high-fat diet (HF). METHODOLOGY/PRINCIPAL FINDINGS: Male, 8-week-old RGS5 knockout (KO) and littermate control mice were fed an NC or an HF for 24 weeks and were phenotyped accordingly. RGS5 KO mice exhibited increased obesity, fat mass and ectopic lipid deposition in the liver compared with littermate control mice, regardless of diet. When fed an HF, RGS5 KO mice had a markedly exacerbated metabolic dysfunction and inflammatory state in the blood serum. Meanwhile, macrophage recruitment and inflammation were increased and these increases were associated with the significant activation of JNK, IΞΊBΞ± and NF-ΞΊBp65 in the adipose tissue, liver and skeletal muscle of RGS5 KO mice fed an HF relative to control mice. These exacerbated metabolic dysfunction and inflammation are accompanied with decreased systemic insulin sensitivity in the adipose tissue, liver and skeletal muscle of RGS5 KO mice, reflected by weakened Akt/GSK3Ξ² phosphorylation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that loss of RGS5 exacerbates HF-induced obesity, hepatic steatosis, inflammation and insulin resistance

    Upregulation of UCP2 by Adiponectin: The Involvement of Mitochondrial Superoxide and hnRNP K

    Get PDF
    Background: The adipocyte-derived hormone adiponectin elicits protective functions against fatty liver diseases and hepatic injuries at least in part by stimulating the expression of a mitochondrial inner membrane transporter, uncoupling protein 2 (UCP2). The present study was designed to investigate the cellular and molecular mechanisms underlying adiponectin-induced UCP2 expression. Methodology/Principal Findnigs: Mice were treated with adiponectin and/or different drug inhibitors. Parenchymal (PCs) and nonparenchymal (NPCs) cells were fractionated from the liver tissues for mitochondria isolation, Western blotting and quantitative PCR analysis. Mitochondrial superoxide production was monitored by MitoSOX staining and flow cytometry analysis. Compared to control mice, the expression of UCP2 was significantly lower in NPCs, but not PCs of adiponectin knockout mice (AKO). Both chronic and acute treatment with adiponectin selectively increased the mRNA and protein abundance of UCP2 in NPCs, especially in the enriched endothelial cell fractions. The transcription inhibitor actinomycin D could not block adiponectin-induced UCP2 expression, whereas the protein synthesis inhibitor cycloheximide inhibited the elevation of UCP2 protein but not its mRNA levels. Mitochondrial content of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a nucleic acid binding protein involved in regulating mRNA transportation and stabilization, was significantly enhanced by adiponectin, which also evoked a transient elevation of mitochondrial superoxide. Rotenone, an inhibitor of mitochondrial respiratory complex I, abolished adiponectin-induced superoxide production, hnRNP K recruitment and UCP2 expression. Conclusions/Significance: Mitochondrial superoxide production stimulated by adiponectin serves as a trigger to initiate the translocation of hnRNP K, which in turn promotes UCP2 expressions in liver. Β© 2012 Zhou et al.published_or_final_versio

    Cellular Model of Warburg Effect Identifies Tumor Promoting Function of UCP2 in Breast Cancer and Its Suppression by Genipin

    Get PDF
    The Warburg Effect is characterized by an irreversible injury to mitochondrial oxidative phosphorylation (OXPHOS) and an increased rate of aerobic glycolysis. In this study, we utilized a breast epithelial cell line lacking mitochondrial DNA (rho0) that exhibits the Warburg Effect associated with breast cancer. We developed a MitoExpress array for rapid analysis of all known nuclear genes encoding the mitochondrial proteome. The gene-expression pattern was compared among a normal breast epithelial cell line, its rho0 derivative, breast cancer cell lines and primary breast tumors. Among several genes, our study revealed that over-expression of mitochondrial uncoupling protein UCP2 in rho0 breast epithelial cells reflects gene expression changes in breast cancer cell lines and in primary breast tumors. Furthermore, over-expression of UCP2 was also found in leukemia, ovarian, bladder, esophagus, testicular, colorectal, kidney, pancreatic, lung and prostate tumors. Ectopic expression of UCP2 in MCF7 breast cancer cells led to a decreased mitochondrial membrane potential and increased tumorigenic properties as measured by cell migration, in vitro invasion and anchorage independent growth. Consistent with in vitro studies, we demonstrate that UCP2 over-expression leads to development of tumors in vivo in an orthotopic model of breast cancer. Genipin, a plant derived small molecule, suppressed the UCP2 led tumorigenic properties, which were mediated by decreased reactive oxygen species and down-regulation of UCP2. However, UCP1, 3, 4 and 5 gene expression was unaffected. UCP2 transcription was controlled by SMAD4. Together, these studies suggest a tumor-promoting function of UCP2 in breast cancer. In summary, our studies demonstrate that i) the Warburg Effect is mediated by UCP2; ii) UCP2 is over-expressed in breast and many other cancers; iii) UCP2 promotes tumorigenic properties in vitro and in vivo and iv) genipin suppresses the tumor promoting function of UCP2

    Baseline Features and Reasons for Nonparticipation in the Colonoscopy Versus Fecal Immunochemical Test in Reducing Mortality From Colorectal Cancer (CONFIRM) Study, a Colorectal Cancer Screening Trial.

    Get PDF
    IMPORTANCE: The Colonoscopy Versus Fecal Immunochemical Test in Reducing Mortality From Colorectal Cancer (CONFIRM) randomized clinical trial sought to recruit 50β€―000 adults into a study comparing colorectal cancer (CRC) mortality outcomes after randomization to either an annual fecal immunochemical test (FIT) or colonoscopy. OBJECTIVE: To (1) describe study participant characteristics and (2) examine who declined participation because of a preference for colonoscopy or stool testing (ie, fecal occult blood test [FOBT]/FIT) and assess that preference\u27s association with geographic and temporal factors. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study within CONFIRM, which completed enrollment through 46 Department of Veterans Affairs medical centers between May 22, 2012, and December 1, 2017, with follow-up planned through 2028, comprised veterans aged 50 to 75 years with an average CRC risk and due for screening. Data were analyzed between March 7 and December 5, 2022. EXPOSURE: Case report forms were used to capture enrolled participant data and reasons for declining participation among otherwise eligible individuals. MAIN OUTCOMES AND MEASURES: Descriptive statistics were used to characterize the cohort overall and by intervention. Among individuals declining participation, logistic regression was used to compare preference for FOBT/FIT or colonoscopy by recruitment region and year. RESULTS: A total of 50β€―126 participants were recruited (mean [SD] age, 59.1 [6.9] years; 46β€―618 [93.0%] male and 3508 [7.0%] female). The cohort was racially and ethnically diverse, with 748 (1.5%) identifying as Asian, 12β€―021 (24.0%) as Black, 415 (0.8%) as Native American or Alaska Native, 34β€―629 (69.1%) as White, and 1877 (3.7%) as other race, including multiracial; and 5734 (11.4%) as having Hispanic ethnicity. Of the 11β€―109 eligible individuals who declined participation (18.0%), 4824 (43.4%) declined due to a stated preference for a specific screening test, with FOBT/FIT being the most preferred method (2820 [58.5%]) vs colonoscopy (1958 [40.6%]; P \u3c .001) or other screening tests (46 [1.0%] P \u3c .001). Preference for FOBT/FIT was strongest in the West (963 of 1472 [65.4%]) and modest elsewhere, ranging from 199 of 371 (53.6%) in the Northeast to 884 of 1543 (57.3%) in the Midwest (P = .001). Adjusting for region, the preference for FOBT/FIT increased by 19% per recruitment year (odds ratio, 1.19; 95% CI, 1.14-1.25). CONCLUSIONS AND RELEVANCE: In this cross-sectional analysis of veterans choosing nonenrollment in the CONFIRM study, those who declined participation more often preferred FOBT or FIT over colonoscopy. This preference increased over time and was strongest in the western US and may provide insight into trends in CRC screening preferences
    • …
    corecore