25 research outputs found

    Mitochondrial protein p26 BCL2 reduces growth factor requirements of NIH3T3 fibroblasts

    Full text link
    The BCL2 (B cell lymphoma/leukemia-2) proto-oncogene encodes a 26-kDa protein that has been localized to the inner mitochondrial membrane and that has been shown to enhance the survival of some types of hematopoietic cells. Here we show that NIH3T3 fibroblasts stably transfected with a BCL2 expression plasmid exhibit reduced dependence on competence-inducing growth factors (platelet-derived growth factor, PDGF; epidermal growth factor, EGF) for initiation of DNA synthesis. The importance of BCL2 for growth factorinduced proliferation of these cells was further confirmed by the useage of BCL2 antisense oligodeoxynucleotides. The mechanisms by which overexpression of p26 BCL2 contributes to fibroblast proliferation are unknown, but do not involve alterations in: (a) the production of inositol triphosphates (IP3), (b) PDGF-induced transient elevations in cytosolic Ca2+ ions, or (c) the activity of protein kinase C enzymes in these transfected cells. The results imply that changes in mitochondrial functions play an important role in the early stages of the cell cycle that render 3T3 cells competent to respond to the serum progression factors that stimulate entry into S-phase.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29195/1/0000249.pd

    Gut Microbiota and Sinusoidal Vasoregulation in MASLD: A Portal Perspective

    No full text
    Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common condition with heterogeneous outcomes difficult to predict at the individual level. Feared complications of advanced MASLD are linked to clinically significant portal hypertension and are initiated by functional and mechanical changes in the unique sinusoidal capillary network of the liver. Early sinusoidal vasoregulatory changes in MASLD lead to increased intrahepatic vascular resistance and represent the beginning of portal hypertension. In addition, the composition and function of gut microbiota in MASLD are distinctly different from the healthy state, and multiple lines of evidence demonstrate the association of dysbiosis with these vasoregulatory changes. The gut microbiota is involved in the biotransformation of nutrients, production of de novo metabolites, release of microbial structural components, and impairment of the intestinal barrier with impact on innate immune responses, metabolism, inflammation, fibrosis, and vasoregulation in the liver and beyond. The gut–liver axis is a conceptual framework in which portal circulation is the primary connection between gut microbiota and the liver. Accordingly, biochemical and hemodynamic attributes of portal circulation may hold the key to better understanding and predicting disease progression in MASLD. However, many specific details remain hidden due to limited access to the portal circulation, indicating a major unmet need for the development of innovative diagnostic tools to analyze portal metabolites and explore their effect on health and disease. We also need to safely and reliably monitor portal hemodynamics with the goal of providing preventive and curative interventions in all stages of MASLD. Here, we review recent advances that link portal metabolomics to altered sinusoidal vasoregulation and may allow for new insights into the development of portal hypertension in MASLD
    corecore