138 research outputs found
Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios
Assessments of inorganic elemental speciation in seawater span the past four decades. Experimentation, compilation and critical review of equilibrium data over the past forty years have, in particular, considerably improved our understanding of cation hydrolysis and the complexation of cations by carbonate ions in solution. Through experimental investigations and critical evaluation it is now known that more than forty elements have seawater speciation schemes that are strongly influenced by pH. In the present work, the speciation of the elements in seawater is summarized in a manner that highlights the significance of pH variations. For elements that have pH-dependent species concentration ratios, this work summarizes equilibrium data (S = 35, t = 25°C) that can be used to assess regions of dominance and relative species concentrations. Concentration ratios of complex species are expressed in the form log[A]/[B] = pH - C where brackets denote species concentrations in solution, A and B are species important at higher (A) and lower (B) solution pH, and C is a constant dependent on salinity, temperature and pressure. In the case of equilibria involving complex oxy-anions (MO(x)(OH)(y)) or hydroxy complexes (M(OH)(n)), C is written as pK(n )= -log K(n )or pK(n)* = -log K(n)* respectively, where K(n )and K(n)* are equilibrium constants. For equilibria involving carbonate complexation, the constant C is written as pQ = -log(K(2)(l)K(n )[HCO(3)(-)]) where K(2)(l )is the HCO(3 )(- )dissociation constant, K(n )is a cation complexation constant and [HCO(3)(-)] is approximated as 1.9 × 10(-3 )molar. Equilibrium data expressed in this manner clearly show dominant species transitions, ranges of dominance, and relative concentrations at any pH
A method for the allocation of sequencing resources in genotyped livestock populations
International audienceAbstractBackgroundThis paper describes a method, called AlphaSeqOpt, for the allocation of sequencing resources in livestock populations with existing phased genomic data to maximise the ability to phase and impute sequenced haplotypes into the whole population.MethodsWe present two algorithms. The first selects focal individuals that collectively represent the maximum possible portion of the haplotype diversity in the population. The second allocates a fixed sequencing budget among the families of focal individuals to enable phasing of their haplotypes at the sequence level. We tested the performance of the two algorithms in simulated pedigrees. For each pedigree, we evaluated the proportion of population haplotypes that are carried by the focal individuals and compared our results to a variant of the widely-used key ancestors approach and to two haplotype-based approaches. We calculated the expected phasing accuracy of the haplotypes of a focal individual at the sequence level given the proportion of the fixed sequencing budget allocated to its family.ResultsAlphaSeqOpt maximises the ability to capture and phase the most frequent haplotypes in a population in three ways. First, it selects focal individuals that collectively represent a larger portion of the population haplotype diversity than existing methods. Second, it selects focal individuals from across the pedigree whose haplotypes can be easily phased using family-based phasing and imputation algorithms, thus maximises the ability to impute sequence into the rest of the population. Third, it allocates more of the fixed sequencing budget to focal individuals whose haplotypes are more frequent in the population than to focal individuals whose haplotypes are less frequent. Unlike existing methods, we additionally present an algorithm to allocate part of the sequencing budget to the families (i.e. immediate ancestors) of focal individuals to ensure that their haplotypes can be phased at the sequence level, which is essential for enabling and maximising subsequent sequence imputation.ConclusionsWe present a new method for the allocation of a fixed sequencing budget to focal individuals and their families such that the final sequenced haplotypes, when phased at the sequence level, represent the maximum possible portion of the haplotype diversity in the population that can be sequenced and phased at that budget
Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity
Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)
Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya
<p>Abstract</p> <p>Background</p> <p>The Himalayan zones, with dense forest vegetation, cover a fifth part of India and store a third part of the country reserves of soil organic carbon (SOC). However, the details of altitudinal distribution of these carbon stocks, which are vulnerable to forest management and climate change impacts, are not well known.</p> <p>Results</p> <p>This article reports the results of measuring the stocks of SOC along altitudinal gradients. The study was carried out in the coniferous subtropical and broadleaf temperate forests of Garhwal Himalaya. The stocks of SOC were found to be decreasing with altitude: from 185.6 to 160.8 t C ha<sup>-1 </sup>and from 141.6 to 124.8 t C ha<sup>-1 </sup>in temperature (<it>Quercus leucotrichophora</it>) and subtropical (<it>Pinus roxburghii</it>) forests, respectively.</p> <p>Conclusion</p> <p>The results of this study lead to conclusion that the ability of soil to stabilize soil organic matter depends negatively on altitude and call for comprehensive theoretical explanation</p
Divalent Metal Ions Tune the Self-Splicing Reaction of the Yeast Mitochondrial Group II Intron Sc.ai5γ
Group II introns are large ribozymes, consisting of six functionally distinct domains that assemble in the presence of Mg2+ to the active structure catalyzing a variety of reactions. The first step of intron splicing is well characterized by a Michaelis–Menten-type cleavage reaction using a two-piece group II intron: the substrate RNA, the 5′-exon covalently linked to domains 1, 2, and 3, is cleaved upon addition of domain 5 acting as a catalyst. Here we investigate the effect of Ca2+, Mn2+, Ni2+, Zn2+, Cd2+, Pb2+, and [Co(NH3)6]3+ on the first step of splicing of the Saccharomyces cerevisiae mitochondrial group II intron Sc.ai5γ. We find that this group II intron is very sensitive to the presence of divalent metal ions other than Mg2+. For example, the presence of only 5% Ca2+ relative to Mg2+ results in a decrease in the maximal turnover rate k cat by 50%. Ca2+ thereby has a twofold effect: this metal ion interferes initially with folding, but then also competes directly with Mg2+ in the folded state, the latter being indicative of at least one specific Ca2+ binding pocket interfering directly with catalysis. Similar results are obtained with Mn2+, Cd2+, and [Co(NH3)6]3+. Ni2+ is a much more powerful inhibitor and the presence of either Zn2+ or Pb2+ leads to rapid degradation of the RNA. These results show a surprising sensitivity of such a large multidomain RNA on trace amounts of cations other than Mg2+ and raises the question of biological relevance at least in the case of Ca2+
- …