101 research outputs found
Accuracy of genomic prediction of dry matter intake in Dutch Holsteins using sequence variants from meta-analyses
We evaluated the accuracy of biology informed genomic prediction for dry matter intake in 2,162 Dutch Holstein cows. Sequence variants were selected from meta-analyses including GWAS summary statistics for QTL and metabolomic QTL in several dairy and crossbred beef populations. Selected variants were prioritized in GBLUP models in a five-fold cross-validation. The accuracies were compared to genomic prediction based on routine 50k genotype data. The average accuracy for the 50k scenario was 0.683. Adding selected sequence variants in the GBLUP model did not improve the accuracies for dry matter intake. Next steps will include testing Bayesian variable selection methods to prioritize variants in genomic prediction for dry matter intake
Recommended from our members
Simulation of radionuclide transport in U. S. agriculture
Because of the recent concern about the impact of energy technologies on man and related health effects, there has emerged a need for models to calculate or predict the effects of radionuclides on man. A general overview is presented of a model that calculates the ingrowth of radionuclides into man's food chain. The FORTRAN IV computer program TERRA, Transport of Environmentally Released Radionuclides in Agriculture, simulates the build-up of radionuclides in soil, four plant food compartments, in meat and milk from beef, and in the livestock food compartments that cause radionuclide build-up in milk and meat from beef. A large data set of spatially oriented parameters has been developed in conjunction with TERRA. This direct-access data set is called SITE, Specific Information on the Terrestrial Environment, and contains 35 parameters for each of 3525 half-degree longitude-latitude cells which define the lower 48 states. TERRA and SITE are used together as a package for determining radionuclide concentrations in man's food anywhere within the conterminous 48 states due to atmospheric releases
Recommended from our members
Review of information on the radiation chemistry of materials around waste canisters in salt and assessment of the need for additional experimental information
The brines, vapors, and salts precipitated from the brines will be exposed to gamma rays and to elevated temperatures in the regions close to a waste package in the salt. Accordingly, they will be subject to changes in composition brought about by reactions induced by the radiations and heat. This report reviews the status of information on the radiation chemistry of brines, gases, and solids which might be present around a waste package in salt and to assess the need for additional laboratory investigations on the radiation chemistry of these materials. The basic aspects of the radiation chemistry of water and aqueous solutions, including concentrated salt solutions, were reviewed briefly and found to be substantially unchanged from those presented in Jenks's 1972 review of radiolysis and hydrolysis in salt-mine brines. Some additional information pertaining to the radiolytic yields and reactions in brine solutions has become available since the previous review, and this information will be useful in the eventual, complete elucidation of the radiation chemistry of the salt-mine brines. 53 references
- …