10 research outputs found

    The Hansenula polymorpha per6 mutant is affected in two adjacent genes which encode dihydroxyacetone kinase and a novel protein, Pak1p, involved in peroxisome integrity

    No full text
    The Hansenula polymorpha per6-210 mutant is impaired in respect of growth on methanol (Mut–) and is characterized by aberrant peroxisome formation. The functionally complementing DNA fragment contains two open reading frames. The first encodes dihydroxyacetone kinase (DAK), a cytosolic enzyme essential for formaldehyde assimilation; the second ORF codes for a novel protein (Pak1p). We have demonstrated that per6-210 cells lack DAK activity, causing the Mut– phenotype, and have strongly reduced levels of Pak1p, resulting in peroxisomal defects. Sequence analysis revealed that per6-210 contains a mutation in the 3' end of the DAK coding region, which overlaps with the promoter region of PAK1. Possibly this mutation also negatively affects PAK1 expression

    The Hansenula polymorpha per6 mutant is affected in two adjacent genes which encode dihydroxyacetone kinase and a novel protein, Pak1p, involved in peroxisome integrity

    No full text
    The Hansenula polymorpha per6-210 mutant is impaired in respect of growth on methanol (Mut–) and is characterized by aberrant peroxisome formation. The functionally complementing DNA fragment contains two open reading frames. The first encodes dihydroxyacetone kinase (DAK), a cytosolic enzyme essential for formaldehyde assimilation; the second ORF codes for a novel protein (Pak1p). We have demonstrated that per6-210 cells lack DAK activity, causing the Mut– phenotype, and have strongly reduced levels of Pak1p, resulting in peroxisomal defects. Sequence analysis revealed that per6-210 contains a mutation in the 3' end of the DAK coding region, which overlaps with the promoter region of PAK1. Possibly this mutation also negatively affects PAK1 expression

    New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica – A comparison

    Get PDF
    Yeasts combine the ease of genetic manipulation and fermentation of a microbial organism with the capability to secrete and to modify proteins according to a general eukaryotic scheme. Yeasts thus provide attractive platforms for the production of recombinant proteins. Here, four important species are presented and compared: the methylotrophic Hansenula polymorpha and Pichia pastoris, distinguished by an increasingly large track record as industrial platforms, and the dimorphic species Arxula adeninivorans and Yarrrowia lipolytica, not yet established as industrial platforms, but demonstrating promising technological potential, as discussed in this article.

    New yeast expression platforms based on methylotrophic and and on dimorphic and – A comparison

    No full text
    corecore