26 research outputs found

    Paving the way towards future-proofing our crops

    Get PDF
    To meet the increasing global demand for food, feed, fibre and other plant-derived products, a steep increase in crop productivity is a scientifically and technically challenging imperative. The CropBooster-P project, a response to the H2020 call ‘Future proofing our plants’, is developing a roadmap for plant research to improve crops critical for the future of European agriculture by increasing crop yield, nutritional quality, value for non-food applications and sustainability. However, if we want to efficiently improve crop production in Europe and prioritize methods for crop trait improvement in the coming years, we need to take into account future socio-economic, technological and global developments, including numerous policy and socio-economic challenges and constraints. Based on a wide range of possible global trends and key uncertainties, we developed four extreme future learning scenarios that depict complementary future developments. Here, we elaborate on how the scenarios could inform and direct future plant research, and we aim to highlight the crop improvement approaches that could be the most promising or appropriate within each of these four future world scenarios. Moreover, we discuss some key plant technology options that would need to be developed further to meet the needs of multiple future learning scenarios, such as improving methods for breeding and genetic engineering. In addition, other diverse platforms of food production may offer unrealized potential, such as underutilized terrestrial and aquatic species as alternative sources of nutrition and biomass production. We demonstrate that although several methods or traits could facilitate a more efficient crop production system in some of the scenarios, others may offer great potential in all four of the future learning scenarios. Altogether, this indicates that depending on which future we are heading toward, distinct plant research fields should be given priority if we are to meet our food, feed and non-food biomass production needs in the coming decades

    Chronic hyperosmotic stress interferes with immune homeostasis in striped catfish (Pangasianodon hypophthalmus, S.) and leads to excessive inflammatory response during bacterial infection

    No full text
    Hyperosmotic stress has often been investigated from osmoregulation perspectives while the effects of such stress on the immune capacity remain largely unexplored. In this study, striped catfish were submitted to three salinity profiles (freshwater, low saline water, saline water) during 20 days, followed by infection with a virulent bacteria, Edwardsiella ictaluri, responsible for the enteric septicaemia of catfish. Osmoregulatory (plasma osmolality, gill Na+K+ATPase), immune (blood cells, lysozyme activity, complement activity, respiratory burst) parameters and mortality rate were investigated. In addition, abundances of heat shock protein 70 and high mobility group box 1 were explored. With elevated salinity, plasma osmolality severely increased while gill Na+K+ATPase slightly increased. Salinity alone stimulated the number of granulocytes, lysozyme activity and respiratory burst but depleted the number of thrombocytes. Salinity in combination with infection stimulated the number of monocytes and ACH50. On the contrary, erythrocytes, hematocrit, heat shock protein 70 and high mobility group box 1 did not significantly vary with salinity profiles. Then, salinity induced earlier onset on mortalities after E. ictaluri inoculation whereas cumulative mortality reach 79.2%, 67.0% and 91.7% respectively in freshwater, low saline water and saline water. In conclusion, salinity stimulates several immune functions in striped catfish but prolonged exposure to excessive hyperosmotic condition may lead to excessive inflammatory response and death. © 2016 Elsevier Lt
    corecore