5,577 research outputs found

    Production and detection of doubly charmed tetraquarks

    Full text link
    The feasibility of tetraquark detection is studied. For the cc\bar{u}\bar{d} tetraquark we show that in present (SELEX, Tevatron, RHIC) and future facilities (LHCb, ALICE) the production rate is promising and we propose some detectable decay channels.Comment: 6 pages, 5 figure

    Practical long-distance quantum key distribution system using decoy levels

    Get PDF
    Quantum key distribution (QKD) has the potential for widespread real-world applications. To date no secure long-distance experiment has demonstrated the truly practical operation needed to move QKD from the laboratory to the real world due largely to limitations in synchronization and poor detector performance. Here we report results obtained using a fully automated, robust QKD system based on the Bennett Brassard 1984 protocol (BB84) with low-noise superconducting nanowire single-photon detectors (SNSPDs) and decoy levels. Secret key is produced with unconditional security over a record 144.3 km of optical fibre, an increase of more than a factor of five compared to the previous record for unconditionally secure key generation in a practical QKD system.Comment: 9 page

    Implications on SUSY breaking mediation mechanisms from observing Bsμ+μB_s \to \mu^+ \mu^- and the muon (g2)(g-2)

    Full text link
    We consider Bsμ+μB_s \to \mu^+ \mu^- and the muon (g2)μ(g-2)_\mu in various SUSY breaking mediation mechanisms. If the decay Bsμ+μB_s \to \mu^+ \mu^- is observed at Tevatron Run II with a branching ratio larger than 2×108\sim 2 \times 10^{-8} , the noscale supergravity (including the gaugino mediation), the gauge mediation scenario with small number of messenger fields and low messenger scale, and a class of anomaly mediation scenarios will be excluded, even if they can accommodate a large muon (g2)μ(g-2)_\mu. On the other hand, the minimal supergravity scenario and similar mechanisms derived from string models can accommodate this observation.Comment: 4 pages, 3 figure

    Two inequivalent sublattices and orbital ordering in MnV2O4 studied by 51V NMR

    Full text link
    We report detailed 51V NMR spectra in a single crystal of MnV2O4. The vanadium spectrum reveals two peaks in the orbitally ordered state, which arise from different internal hyperfine fields at two different V sublattices. These internal fields evolve smoothly with externally applied field, and show no change in structure that would suggest a change of the orbital ordering. The result is consistent with the orbital ordering model recently proposed by Sarkar et al. [Phys. Rev. Lett. 102, 216405 (2009)] in which the same orbital that is a mixture of t_2g orbitals rotates by about 45^\circ alternately within and between orbital chains in the I4_1/a tetragonal space group.Comment: 4 pages, 4 figures, title changed, published in PRB as a rapid com

    AC susceptibility and 51^{51}V NMR study of MnV2_2O4_4

    Full text link
    We report 51^{51}V zero-field NMR of manganese vanadate spinel of MnV2_2O4_4, together with both ac and dc magnetization measurements. The field and temperature dependence of ac susceptibilities show a reentrant-spin-glass-like behavior below the ferrimagnetic(FEM) ordering temperature. The zero-field NMR spectrum consists of multiple lines ranging from 240 MHz to 320 MHz. Its temperature dependence reveals that the ground state is given by the simultaneous formation of a long-range FEM order and a short-range order component. We attribute the spin-glass-like anomalies to freezing and fluctuations of the short-range ordered state caused by the competition between spin and orbital ordering of the V site

    Muon Anomalous g2g -2 and Gauged LμLτL_\mu - L_\tau Models

    Full text link
    In this paper we study ZZ' contribution to g2g -2 of the muon anomalous magnetic dipole moment in gauged U(1)LμLτU(1)_{L_\mu - L_\tau} models. Here LiL_i are the lepton numbers. We find that there are three classes of models which can produce a large value of g2g-2 to account for possible discrepancy between the experimental data and the Standard Model prediction. The three classes are: a) Models with an exact U(1)LμLτU(1)_{L_\mu - L_\tau}. In these models, ZZ' is massless. The new gauge interaction coupling ea/cosθWe a/\cos\theta_W is constrained to be 0.8×103<a<2.24×103 0.8\times 10^{-3} < |a| < 2.24\times 10^{-3}. b) Models with broken U(1)LμLτU(1)_{L_\mu - L_\tau} and the breaking scale is not related to electroweak symmetry breaking scale. The ZZ' gauge boson is massive. The allowed range of the coupling and the ZZ' mass are constrained, but ZZ' mass can be large; And c) The U(1)LμLτU(1)_{L_\mu-L_\tau} is broken and the breaking scale is related to the electroweak scale. In this case the ZZ' mass is constrained to be 1.2\sim 1.2 GeV. We find that there are interesting experimental signatures in μ+μμ+μ,τ+τ\mu^+\mu^-\to \mu^+\mu^-, \tau^+\tau^- in these models.Comment: 13 pages, 9 figure

    Instantons and the spectral function of electrons in the half-filled Landau level

    Full text link
    We calculate the instanton-anti-instanton action SMMˉ(τ)S_{M {\bar M}} (\tau) in the gauge theory of the half-filled Landau level. It is found that SMMˉ(τ)=(3η)[Ω0(η) τ]1/(3η)S_{M {\bar M}} (\tau) = (3 - \eta) \left [ \Omega_0 (\eta) \ \tau \right ]^{1 / (3 - \eta)} for a class of interactions v(q)=V0/qη (0η<2)v ({\bf q}) = V_0 / q^{\eta} \ ( 0 \leq \eta < 2 ) between electrons. This means that the instanton-anti-instanton pairs are confining so that a well defined `charged' composite fermion can exist. It is also shown that SMMˉ(τ)S_{M {\bar M}} (\tau) can be used to calculate the spectral function of electrons from the microscopic theory within a semiclassical approximation. The resulting spectral function varies as e[Ω0(η)/ω]1/(2η)e^{ - \left [ \Omega_0 (\eta) / \omega \right ]^{1 / ( 2 - \eta ) } } at low energies.Comment: 13 pages, Plain Tex, MIT-CMT-APR-9

    A New Parametrization of the Seesaw Mechanism and Applications in Supersymmetric Models

    Full text link
    We present a new parametrization of the minimal seesaw model, expressing the heavy-singlet neutrino Dirac Yukawa couplings (Yν)ij(Y_\nu)_{ij} and Majorana masses MNiM_{N_i} in terms of effective light-neutrino observables and an auxiliary Hermitian matrix H.H. In the minimal supersymmetric version of the seesaw model, the latter can be related directly to other low-energy observables, including processes that violate charged lepton flavour and CP. This parametrization enables one to respect the stringent constraints on muon-number violation while studying the possible ranges for other observables by scanning over the allowed parameter space of the model. Conversely, if any of the lepton-flavour-violating process is observed, this measurement can be used directly to constrain (Yν)ij(Y_\nu)_{ij} and MNi.M_{N_i}. As applications, we study flavour-violating τ\tau decays and the electric dipole moments of leptons in the minimal supersymmetric seesaw model.Comment: Important references adde

    Constraints on the nonuniversal Z^\prime couplings from B\to\pi K, \pi K^{\ast} and \rho K Decays

    Full text link
    Motivated by the large difference between the direct CP asymmetries ACP(Bπ0K)A_{CP}(B^-\to \pi^0 K^-) and ACP(Bˉ0π+K)A_{CP}(\bar{B}^{0}\to \pi^{+} K^{-}), we combine the up-to-date experimental information on BπKB\to\pi K, πK\pi K^{\ast} and ρK\rho K decays to pursue possible solutions with the nonuniversal ZZ^{\prime} model. Detailed analyses of the relative impacts of different types of couplings are presented in four specific cases. Numerically, we find that the new coupling parameters, ξLL\xi^{LL} and ξLR\xi^{LR} with a common nontrivial new weak phase ϕL86\phi_L\sim-86^{\circ}, which are relevant to the ZZ^{\prime} contributions to the electroweak penguin sector C9\triangle C_9 and C7\triangle C_7, are crucial to the observed "πK\pi K puzzle". Furthermore, they are found to be definitely unequal and opposite in sign. We also find that ACP(Bρ0K)A_{CP}(B^-\to \rho^0 K^-) can put a strong constraint on the new ZZ^{\prime} couplings, which implies the ZZ^{\prime} contributions to the coefficient of QCD penguins operator O3O_3 involving the parameter ζLL\zeta^{LL} required.Comment: 27 pages, 6 figures. References and a note adde
    corecore