9 research outputs found

    Cadmium resistance in tobacco plants expressing the MuSI gene

    Get PDF
    MuSI, a gene that corresponds to a domain that contains the rubber elongation factor (REF), is highly homologous to many stress-related proteins in plants. Since MuSI is up-regulated in the roots of plants treated with cadmium or copper, the involvement of MuSI in cadmium tolerance was investigated in this study. Escherichia coli cells overexpressing MuSI were more resistant to Cd than wild-type cells transfected with vector alone. MuSI transgenic plants were also more resistant to Cd. MuSI transgenic tobacco plants absorbed less Cd than wild-type plants. Cd translocation from roots to shoots was reduced in the transgenic plants, thereby avoiding Cd toxicity. The number of short trichomes in the leaves of wild-type tobacco plants was increased by Cd treatment, while this was unchanged in MuSI transgenic tobacco. These results suggest that MuSI transgenic tobacco plants have enhanced tolerance to Cd via reduced Cd uptake and/or increased Cd immobilization in the roots, resulting in less Cd translocation to the shoots

    Extracts from Dendropanax morbifera Leaves Have Modulatory Effects on Neuroinflammation in Microglia

    No full text
    Dendropanax morbifera (D. morbifera), a species endemic to Korea, is largely distributed throughout the southern part of the country. Its leaves, stems, roots, and seeds have been used as a form of alternative medicine for various diseases and neurological disorders including paralysis, stroke, and migraine. However, the molecular mechanisms that underlie the remedial effects of D. morbifera remain largely unknown. In this paper, extracts from D. morbifera leaves were prepared using ethyl acetate as a solvent (abbreviated as DMLE). The modulatory effects of DMLE on neuroinflammation were studied in a lipopolysaccharide (LPS)-stimulated BV2 murine microglial cell line. Production of pro-inflammatory cytokines, activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB), and different M1/M2 activation states of microglia were examined. DMLE treatment suppressed the production of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and nitric oxide (NO) in LPS-stimulated BV2 cells. DMLE treatment also attenuated the activation of MAPKs and NF-κB. In a novel discovery, we found that DMLE up-regulated the marker genes representing an alternative, anti-inflammatory M2 polarization, while suppressing the expression of the classical, pro-inflammatory M1 activation state genes. Here, we uncovered the cellular mechanisms underlying the beneficial effects of D. morbifera against neuroinflammation using BV2 microglia cells. These results strongly suggest that DMLE was able to counter the effects of LPS on BV2 cells via control of microglia polarization states. Additionally, study results indicated that DMLE may have therapeutic potential as a neuroinflammation-suppressing treatment for neurodegenerative diseases. © 2016 World Scientific Publishing Company.

    Modulation of Mitochondrial Function and Autophagy Mediates Carnosine Neuroprotection Against Ischemic Brain Damage

    No full text
    BACKGROUND AND PURPOSE - : Despite the rapidly increasing global burden of ischemic stroke, no therapeutic options for neuroprotection against stroke currently exist. Recent studies have shown that autophagy plays a key role in ischemic neuronal death, and treatments that target autophagy may represent a novel strategy in neuroprotection. We investigated whether autophagy is regulated by carnosine, an endogenous pleiotropic dipeptide that has robust neuroprotective activity against ischemic brain damage. METHODS - : We examined the effect of carnosine on mitochondrial dysfunction and autophagic processes in rat focal ischemia and in neuronal cultures. RESULTS - : Autophagic pathways such as reduction of phosphorylated mammalian target of rapamycin (mTOR)/p70S6K and the conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to LC3-II were enhanced in the ischemic brain. However, treatment with carnosine significantly attenuated autophagic signaling in the ischemic brain, with improvement of brain mitochondrial function and mitophagy signaling. The protective effect of carnosine against autophagy was also confirmed in primary cortical neurons. CONCLUSIONS - : Taken together, our data suggest that the neuroprotective effect of carnosine is at least partially mediated by mitochondrial protection and attenuation of deleterious autophagic processes. Our findings shed new light on the mechanistic pathways that this exciting neuroprotective agent influences. © 2014 American Heart Association, Inc.
    corecore