5,690 research outputs found

    Flavor SU(3) analysis of charmless B->PP decays

    Full text link
    We perform a global fits to charmless BPPB \to PP decays which independently constrain the (ρˉ,ηˉ)(\bar\rho,\bar\eta) vertex of the unitarity triangle. The fitted amplitudes and phase are used to predict the branching ratios and CP asymmetries of all decay modes, including those of the BsB_s system. Different schemes of SU(3) breaking in decay amplitude sizes are analyzed. The possibility of having a new physics contribution to KπK \pi decays is also discussed.Comment: 3 pages, 2 figs. Talk given at EPS-HEP07 To appear in the proceedings, Reference adde

    U-Spin Tests of the Standard Model and New Physics

    Get PDF
    Within the standard model, a relation involving branching ratios and direct CP asymmetries holds for the B-decay pairs that are related by U-spin. The violation of this relation indicates new physics (NP). In this paper, we assume that the NP affects only the Delta S = 1 decays, and show that the NP operators are generally the same as those appearing in B -> pi K decays. The fit to the latest B -> pi K data shows that only one NP operator is sizeable. As a consequence, the relation is expected to be violated for only one decay pair: Bd -> K0 pi0 and Bs -> Kbar0 pi0.Comment: 12 pages, latex, no figures. References changed to follow MPL guidelines; info added about U-spin breaking and small NP strong phases; discussion added about final-state pi-K rescattering; analysis and conclusions unaltere

    Ferrimagnetism of MnV_2O_4 spinel

    Full text link
    The spinel MnV_2O_4 is a two-sublattice ferrimagnet, with site A occupied by the Mn^{2+} ion and site B by the V^{3+} ion. The magnon of the system, the transversal fluctuation of the total magnetization, is a complicated mixture of the sublattice A and B transversal magnetic fluctuations. As a result, the magnons' fluctuations suppress in a different way the manganese and vanadium magnetic orders and one obtains two phases. At low temperature (0,T^*) the magnetic orders of the Mn and V ions contribute to the magnetization of the system, while at the high temperature (T^*,T_N), the vanadium magnetic order is suppressed by magnon fluctuations, and only the manganese ions have non-zero spontaneous magnetization. A modified spin-wave theory is developed to describe the two phases and to calculate the magnetization as a function of temperature. The anomalous M(T)M(T) curve reproduces the experimentally obtained ZFC magnetization.Comment: 4 pages, one figur

    B_{s,d} -> l^+ l^- and K_L -> l^+ l^- in SUSY models with non-minimal sources of flavour mixing

    Full text link
    We present a general analysis of B_{s,d}-> l^+ l^- and K_L -> l^+ l^- decays in supersymmetric models with non-minimal sources of flavour mixing. In spite of the existing constraints on off-diagonal squark mass terms, these modes could still receive sizeable corrections, mainly because of Higgs-mediated FCNCs arising at large tan(beta). The severe limits on scenarios with large tan(beta) and non-negligible {tilde d}^i_{R(L)}-{d-tilde}^j_{R(L)} mixing imposed by the present experimental bounds on these modes and Delta B=2 observables are discussed in detail. In particular, we show that scalar-current contributions to K_L -> l^+ l^- and B-{bar B} mixing set non-trivial constraints on the possibility that B_s -> l^+ l^- and B_d -> l^+ l^- receive large corrections.Comment: 18 pages, 4 figures (v2: minor changes, published version

    Diffusion on a heptagonal lattice

    Full text link
    We study the diffusion phenomena on the negatively curved surface made up of congruent heptagons. Unlike the usual two-dimensional plane, this structure makes the boundary increase exponentially with the distance from the center, and hence the displacement of a classical random walker increases linearly in time. The diffusion of a quantum particle put on the heptagonal lattice is also studied in the framework of the tight-binding model Hamiltonian, and we again find the linear diffusion like the classical random walk. A comparison with diffusion on complex networks is also made.Comment: 5 pages, 6 figure
    corecore