34 research outputs found
Inspecting Species and Freshness of Fish Fillets Using Multimode Hyperspectral Imaging Techniques
This study developed multimode hyperspectral imaging techniques to detect substitution and mislabeling of fish fillets. Line-scan hyperspectral images were collected from fish fillets in four modes, including reflectance in visible and nearinfrared (VNIR) region, fluorescence by 365 nm UV excitation, reflectance in short-wave infrared (SWIR) region, and Raman by 785 nm laser excitation. Fish fillets of six species (i.e., red snapper, vermilion snapper, Malabar snapper, summer flounder, white bass, and tilapia) were used for species differentiation and frozen-thawed red snapper fillets were used for freshness evaluation. A total of 24 machine learning classifiers were used for fish species and freshness classifications using four types of spectral data in three different subsets (i.e., full spectra, first ten components of principal component analysis, and bands selected by a sequential feature selection method). The highest accuracies were achieved at 100% using full VNIR reflectance spectra for the species classification and 99.9% using full SWIR reflectance spectra for the freshness classification. The VNIR reflectance mode gave an overall best performance for both species and freshness inspection
Detection of Fish Fillet Substitution and Mislabeling Using Multimode Hyperspectral Imaging Techniques
Substitution of high-priced fish species with inexpensive alternatives and mislabeling frozen-thawed fish fillets as fresh are two important fraudulent practices of concern in the seafood industry. This study aimed to develop multimode hyperspectral imaging techniques to detect substitution and mislabeling of fish fillets. Line-scan hyperspectral images were acquired from fish fillets in four modes, including reflectance in visible and near-infrared (VNIR) region, fluorescence by 365 nm UV excitation, reflectance in short-wave infrared (SWIR) region, and Raman by 785 nm laser excitation. Fish fillets of six species (i.e., red snapper, vermilion snapper, Malabar snapper, summer flounder, white bass, and tilapia) were used for species differentiation and frozen-thawed red snapper fillets were used for freshness evaluation. All fillet samples were DNA tested to authenticate the species. A total of 24 machine learning classifiers in six categories (i.e., decision trees, discriminant analysis, Naive Bayes classifiers, support vector machines, k-nearest neighbor classifiers, and ensemble classifiers) were used for fish species and freshness classifications using four types of spectral data in three different datasets (i.e., full spectra, first ten components of principal component analysis, and bands selected by sequential feature selection method). The highest accuracies were achieved at 100% using full VNIR reflectance spectra for the species classification and 99.9% using full SWIR reflectance spectra for the freshness classification. The VNIR reflectance mode gave the overall best performance for both species and freshness inspection, and it will be further investigated as a rapid technique for detection of fish fillet substitution and mislabeling
Advancement of non-destructive spectral measurements for the quality of major tropical fruits and vegetables: a review
The quality of tropical fruits and vegetables and the expanding global interest in eating healthy foods have resulted in the continual development of reliable, quick, and cost-effective quality assurance methods. The present review discusses the advancement of non-destructive spectral measurements for evaluating the quality of major tropical fruits and vegetables. Fourier transform infrared (FTIR), Near-infrared (NIR), Raman spectroscopy, and hyperspectral imaging (HSI) were used to monitor the external and internal parameters of papaya, pineapple, avocado, mango, and banana. The ability of HSI to detect both spectral and spatial dimensions proved its efficiency in measuring external qualities such as grading 516 bananas, and defects in 10 mangoes and 10 avocados with 98.45%, 97.95%, and 99.9%, respectively. All of the techniques effectively assessed internal characteristics such as total soluble solids (TSS), soluble solid content (SSC), and moisture content (MC), with the exception of NIR, which was found to have limited penetration depth for fruits and vegetables with thick rinds or skins, including avocado, pineapple, and banana. The appropriate selection of NIR optical geometry and wavelength range can help to improve the prediction accuracy of these crops. The advancement of spectral measurements combined with machine learning and deep learning technologies have increased the efficiency of estimating the six maturity stages of papaya fruit, from the unripe to the overripe stages, with F1 scores of up to 0.90 by feature concatenation of data developed by HSI and visible light. The presented findings in the technological advancements of non-destructive spectral measurements offer promising quality assurance for tropical fruits and vegetables
Inactivation of \u3cem\u3eEscherichia coli\u3c/em\u3e, \u3cem\u3eSalmonella enterica\u3c/em\u3e, and \u3cem\u3eListeria monocytogenes\u3c/em\u3e Using the Contamination Sanitization Inspection and Disinfection (CSI-D) Device
The Contamination Sanitization Inspection and Disinfection (CSI-D) device is a handheld fluorescence-based imaging system designed to disinfect food contact surfaces using ultraviolet-C (UVC) illumination. This study aimed to determine the optimal CSI-D parameters (i.e., UVC exposure time and intensity) for the inactivation of the following foodborne bacteria plated on non-selective media: generic Escherichia coli (indicator organism) and the pathogens enterohemorrhagic E. coli, enterotoxigenic E. coli, Salmonella enterica, and Listeria monocytogenes. Each bacterial strain was spread-plated on non-selective agar and exposed to high-intensity (10 mW/cm2) or low-intensity (5 mW/cm2) UVC for 1–5 s. Control plates were not exposed to UVC. The plates were incubated overnight at 37 °C and then enumerated. Three trials for each bacterial strain were conducted. Statistical analysis was carried out to determine if there were significant differences in bacterial growth between UVC intensities and exposure times. Overall, exposure to low or high intensity for 3–5 s resulted in consistent inhibition of bacterial growth, with reductions of 99.9–100 % for E. coli, 96.8–100 % for S. enterica, and 99.2–100 % for L. monocytogenes. The 1 s exposure time showed inconsistent results, with a 66.0–100 % reduction in growth depending on the intensity and bacterial strain. When the results for all strains within each species were combined, the 3–5 s exposure times showed significantly greater (p \u3c 0.05) growth inhibition than the 1 s exposure time. However, there were no significant differences (p \u3e 0.05) in growth inhibition between the high and low UVC intensities. The results of this study show that, in pure culture conditions, exposure to UVC with the CSI-D device for ≥3 s is required to achieve consistent reduction of E. coli, S. enterica, and L. monocytogenes
Simulated Annealing-Based Hyperspectral Data Optimization for Fish Species Classification: Can the Number of Measured Wavelengths Be Reduced?
Relative to standard red/green/blue (RGB) imaging systems, hyperspectral imaging systems offer superior capabilities but tend to be expensive and complex, requiring either a mechanically complex push-broom line scanning method, a tunable filter, or a large set of light emitting diodes (LEDs) to collect images in multiple wavelengths. This paper proposes a new methodology to support the design of a hypothesized system that uses three imaging modes—fluorescence, visible/near-infrared (VNIR) reflectance, and shortwave infrared (SWIR) reflectance—to capture narrow-band spectral data at only three to seven narrow wavelengths. Simulated annealing is applied to identify the optimal wavelengths for sparse spectral measurement with a cost function based on the accuracy provided by a weighted k-nearest neighbors (WKNN) classifier, a common and relatively robust machine learning classifier. Two separate classification approaches are presented, the first using a multi-layer perceptron (MLP) artificial neural network trained on sparse data from the three individual spectra and the second using a fusion of the data from all three spectra. The results are compared with those from four alternative classifiers based on common machine learning algorithms. To validate the proposed methodology, reflectance and fluorescence spectra in these three spectroscopic modes were collected from fish fillets and used to classify the fillets by species. Accuracies determined from the two classification approaches are compared with benchmark values derived by training the classifiers with the full resolution spectral data. The results of the single-layer classification study show accuracies ranging from ~68% for SWIR reflectance to ~90% for fluorescence with just seven wavelengths. The results of the fusion classification study show accuracies of about 95% with seven wavelengths and more than 90% even with just three wavelengths. Reducing the number of required wavelengths facilitates the creation of rapid and cost-effective spectral imaging systems that can be used for widespread analysis in food monitoring/food fraud, agricultural, and biomedical applications
A Novel Machine-Learning Framework Based on a Hierarchy of Dispute Models for the Identification of Fish Species Using Multi-Mode Spectroscopy
Seafood mislabeling rates of approximately 20% have been reported globally. Traditional methods for fish species identification, such as DNA analysis and polymerase chain reaction (PCR), are expensive and time-consuming, and require skilled technicians and specialized equipment. The combination of spectroscopy and machine learning presents a promising approach to overcome these challenges. In our study, we took a comprehensive approach by considering a total of 43 different fish species and employing three modes of spectroscopy: fluorescence (Fluor), and reflectance in the visible near-infrared (VNIR) and short-wave near-infrared (SWIR). To achieve higher accuracies, we developed a novel machine-learning framework, where groups of similar fish types were identified and specialized classifiers were trained for each group. The incorporation of global (single artificial intelligence for all species) and dispute classification models created a hierarchical decision process, yielding higher performances. For Fluor, VNIR, and SWIR, accuracies increased from 80%, 75%, and 49% to 83%, 81%, and 58%, respectively. Furthermore, certain species witnessed remarkable performance enhancements of up to 40% in single-mode identification. The fusion of all three spectroscopic modes further boosted the performance of the best single mode, averaged over all species, by 9%. Fish species mislabeling not only poses health-related risks due to contaminants, toxins, and allergens that could be life-threatening, but also gives rise to economic and environmental hazards and loss of nutritional benefits. Our proposed method can detect fish fraud as a real-time alternative to DNA barcoding and other standard methods. The hierarchical system of dispute models proposed in this work is a novel machine-learning tool not limited to this application, and can improve accuracy in any classification problem which contains a large number of classes
Rapid Assessment of Fish Freshness for Multiple Supply-Chain Nodes Using Multi-Mode Spectroscopy and Fusion-Based Artificial Intelligence
This study is directed towards developing a fast, non-destructive, and easy-to-use handheld multimode spectroscopic system for fish quality assessment. We apply data fusion of visible near infra-red (VIS-NIR) and short wave infra-red (SWIR) reflectance and fluorescence (FL) spectroscopy data features to classify fish from fresh to spoiled condition. Farmed Atlantic and wild coho and chinook salmon and sablefish fillets were measured. Three hundred measurement points on each of four fillets were taken every two days over 14 days for a total of 8400 measurements for each spectral mode. Multiple machine learning techniques including principal component analysis, self-organized maps, linear and quadratic discriminant analyses, k-nearest neighbors, random forest, support vector machine, and linear regression, as well as ensemble and majority voting methods, were used to explore spectroscopy data measured on fillets and to train classification models to predict freshness. Our results show that multi-mode spectroscopy achieves 95% accuracy, improving the accuracies of the FL, VIS-NIR and SWIR single-mode spectroscopies by 26, 10 and 9%, respectively. We conclude that multi-mode spectroscopy and data fusion analysis has the potential to accurately assess freshness and predict shelf life for fish fillets and recommend this study be expanded to a larger number of species in the future
Quantitative Evaluation of Food-Waste Components in Organic Fertilizer Using Visible–Near-Infrared Hyperspectral Imaging
Excessive addition of food waste fertilizer to organic fertilizer (OF) is forbidden in the Republic of Korea because of high sodium chloride and capsaicin concentrations in Korean food. Thus, rapid and nondestructive evaluation techniques are required. The objective of this study is to quantitatively evaluate food-waste components (FWCs) using hyperspectral imaging (HSI) in the visible–near-infrared (Vis/NIR) region. A HSI system for evaluating fertilizer components and prediction algorithms based on partial least squares (PLS) analysis and least squares support vector machines (LS-SVM) are developed. PLS and LS-SVM preprocessing methods are employed and compared to select the optimal of two chemometrics methods. Finally, distribution maps visualized using the LS-SVM model are created to interpret the dynamic changes in the OF FWCs with increasing FWC concentration. The developed model quantitively evaluates the OF FWCs with a coefficient of determination of 0.83 between the predicted and actual values. The developed Vis/NIR HIS system and optimized model exhibit high potential for OF FWC discrimination and quantitative evaluation
Development of Fluorescence Imaging Technique to Detect Fresh-Cut Food Organic Residue on Processing Equipment Surface
With increasing public demand for ready-to-eat fresh-cut food products, proper sanitation of food-processing equipment surfaces is essential to mitigate potential contamination of these products to ensure safe consumption. This study presents a sanitation monitoring technique using hyperspectral fluorescence images to detect fruit residues on food-processing equipment surfaces. An algorithm to detect residues on the surfaces of 2B-finished and #4-finished stainless-steel, both commonly used in food processing equipment, was developed. Honeydew, orange, apple, and watermelon were selected as representatives since they are mainly used as fresh-cut fruits. Hyperspectral fluorescence images were obtained for stainless steel sheets to which droplets of selected fruit juices at six concentrations were applied and allowed to dry. The most significant wavelengths for detecting juice at each concentration were selected through ANOVA analysis. Algorithms using a single waveband and using a ratio of two wavebands were developed for each sample and for all the samples combined. Results showed that detection accuracies were better for the samples with higher concentrations. The integrated algorithm had a detection accuracy of 100% and above 95%, respectively, for the original juice up to the 1:20 diluted samples and for the more dilute 1:50 to 1:100 samples, respectively. The results of this study establish that using hyperspectral imaging, even a small residual quantity that may exist on the surface of food processing equipment can be detected and that sanitation monitoring and management is possible
Near-Infrared Transmittance Spectral Imaging for Nondestructive Measurement of Internal Disorder in Korean Ginseng
The grading of ginseng (Panax ginseng) including the evaluation of internal quality attributes is essential in the ginseng industry for quality control. Assessment for inner whitening, a major internal disorder, must be conducted when identifying high quality ginseng. Conventional methods for detecting inner whitening in ginseng root samples use manual inspection, which is time-consuming and inaccurate. This study develops an internal quality measurement technique using near-infrared transmittance spectral imaging to evaluate inner whitening in ginseng samples. Principle component analysis (PCA) was used on ginseng hypercube data to evaluate the developed technique. The transmittance spectra and spectral images of ginseng samples exhibiting inner whitening showed weak intensity characteristics compared to normal ginseng in the region of 900–1050 nm and 1150–1400 nm respectively, owing to the presence of whitish internal tissues that have higher optical density. On the basis of the multivariate analysis method, even a simple waveband ratio image has the great potential to quickly detect inner whitening in ginseng samples, since these ratio images show a significant difference between whitened and non-whitened regions. Therefore, it is possible to develop an efficient and rapid spectral imaging system for the real-time detection of inner whitening in ginseng using minimal spectral wavebands. This novel strategy for the rapid, cost-effective, non-destructive detection of ginseng’s inner quality can be a key component for the automation of ginseng grading