216 research outputs found
Vector bundles on the projective line and finite domination of chain complexes
Finitely dominated chain complexes over a Laurent polynomial ring in one
indeterminate are characterised by vanishing of their Novikov homology. We
present an algebro-geometric approach to this result, based on extension of
chain complexes to sheaves on the projective line. We also discuss the
K-theoretical obstruction to extension.Comment: v1: 11 page
Influence of Hybridization on the Properties of the Spinless Falicov-Kimball Model
Without a hybridization between the localized f- and the conduction (c-)
electron states the spinless Falicov-Kimball model (FKM) is exactly solvable in
the limit of high spatial dimension, as first shown by Brandt and Mielsch. Here
I show that at least for sufficiently small c-f-interaction this exact
inhomogeneous ground state is also obtained in Hartree-Fock approximation. With
hybridization the model is no longer exactly solvable, but the approximation
yields that the inhomogeneous charge-density wave (CDW) ground state remains
stable also for finite hybridization V smaller than a critical hybridization
V_c, above which no inhomogeneous CDW solution but only a homogeneous solution
is obtained. The spinless FKM does not allow for a ''ferroelectric'' ground
state with a spontaneous polarization, i.e. there is no nonvanishing
-expectation value in the limit of vanishing hybridization.Comment: 7 pages, 6 figure
Pedestrian, Crowd, and Evacuation Dynamics
This contribution describes efforts to model the behavior of individual
pedestrians and their interactions in crowds, which generate certain kinds of
self-organized patterns of motion. Moreover, this article focusses on the
dynamics of crowds in panic or evacuation situations, methods to optimize
building designs for egress, and factors potentially causing the breakdown of
orderly motion.Comment: This is a review paper. For related work see http://www.soms.ethz.c
Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets
This document is the Technical Design Report covering the two large
spectrometer magnets of the PANDA detector set-up. It shows the conceptual
design of the magnets and their anticipated performance. It precedes the tender
and procurement of the magnets and, hence, is subject to possible modifications
arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti
Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski,
Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy),
Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy
[Introduction] Toward an anthropology of the just price: history, ethnography, critique
No description supplie
Comparison of evolutionary algorithms in gene regulatory network model inference
Background: The evolution of high throughput technologies that measure gene expression levels has created a
data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of
these data has made this process very di±cult. At the moment, several methods of discovering qualitative
causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative
analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real
microarray data which are noisy and insu±cient.
Results: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene
regulatory network modelling. The aim is to present the techniques used and o®er a comprehensive comparison
of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression
data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared.
Conclusions: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene
regulatory networks. Promising methods are identi¯ed and a platform for development of appropriate model
formalisms is established
Human Amniotic Epithelial Cell Transplantation Induces Markers of Alternative Macrophage Activation and Reduces Established Hepatic Fibrosis
Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC) from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon tetrachloride (CCl4) twice weekly resulting in bridging fibrosis by 12 weeks. hAEC (2×106) were infused via the tail vein at week 8 or weeks 8 and 10 (single and double dose, respectively). Human cells were detected in mouse liver four weeks after transplantation showing hAEC engraftment. CCl4 treated mice receiving single or double hAEC doses showed a significant but similar decrease in liver fibrosis area associated with decreased activation of collagen-producing hepatic stellate cells and decreased hepatic protein levels of the pro-fibrogenic cytokine, transforming growth factor-beta1. CCl4 administration caused hepatic T cell infiltration that decreased significantly following hAEC transplantation. Hepatic macrophages play a crucial role in both fibrogenesis and fibrosis resolution. Mice exposed to CCl4 demonstrated increased numbers of hepatic macrophages compared to normal mice; the number of macrophages decreased significantly in CCl4 treated mice given hAEC. These mice had significantly lower hepatic protein levels of the chemokine monocyte chemoattractant protein-1 than mice given CCl4 alone. Alternatively activated M2 macrophages are associated with fibrosis resolution. CCl4 treated mice given hAEC showed increased expression of genes associated with M2 macrophages including YM-1, IL-10 and CD206. We provide novel data showing that hAEC transplantation induces a wound healing M2 macrophage phenotype associated with reduction of established hepatic fibrosis that justifies further investigation of this potential cell-based therapy for advanced hepatic fibrosis
Neural Mechanisms of Human Perceptual Learning: Electrophysiological Evidence for a Two-Stage Process
Artículo de publicación ISIBackground: Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed.
Methodology/Principal Findings: We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz) and alpha (8-14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing.This research was supported by CONICYT doctoral grant to C.M.H. and by an ECOS-Sud/CONICYT grant C08S02 and FONDECYT 1090612 grant to D.C.
and F.A
PeptX: Using Genetic Algorithms to optimize peptides for MHC binding
<p>Abstract</p> <p>Background</p> <p>The binding between the major histocompatibility complex and the presented peptide is an indispensable prerequisite for the adaptive immune response. There is a plethora of different <it>in silico </it>techniques for the prediction of the peptide binding affinity to major histocompatibility complexes. Most studies screen a set of peptides for promising candidates to predict possible T cell epitopes. In this study we ask the question vice versa: Which peptides do have highest binding affinities to a given major histocompatibility complex according to certain <it>in silico </it>scoring functions?</p> <p>Results</p> <p>Since a full screening of all possible peptides is not feasible in reasonable runtime, we introduce a heuristic approach. We developed a framework for Genetic Algorithms to optimize peptides for the binding to major histocompatibility complexes. In an extensive benchmark we tested various operator combinations. We found that (1) selection operators have a strong influence on the convergence of the population while recombination operators have minor influence and (2) that five different binding prediction methods lead to five different sets of "optimal" peptides for the same major histocompatibility complex. The consensus peptides were experimentally verified as high affinity binders.</p> <p>Conclusion</p> <p>We provide a generalized framework to calculate sets of high affinity binders based on different previously published scoring functions in reasonable runtime. Furthermore we give insight into the different behaviours of operators and scoring functions of the Genetic Algorithm.</p
Antifibrotic Effects of the Dual CCR2/CCR5 Antagonist Cenicriviroc in Animal Models of Liver and Kidney Fibrosis
Background & Aims
Interactions between C-C chemokine receptor types 2 (CCR2) and 5 (CCR5) and their ligands, including CCL2 and CCL5, mediate fibrogenesis by promoting monocyte/macrophage recruitment and tissue infiltration, as well as hepatic stellate cell activation. Cenicriviroc (CVC) is an oral, dual CCR2/CCR5 antagonist with nanomolar potency against both receptors. CVC’s anti-inflammatory and antifibrotic effects were evaluated in a range of preclinical models of inflammation and fibrosis.
Methods
Monocyte/macrophage recruitment was assessed in vivo in a mouse model of thioglycollate-induced peritonitis. CCL2-induced chemotaxis was evaluated ex vivo on mouse monocytes. CVC’s antifibrotic effects were evaluated in a thioacetamide-induced rat model of liver fibrosis and mouse models of diet-induced non-alcoholic steatohepatitis (NASH) and renal fibrosis. Study assessments included body and liver/kidney weight, liver function test, liver/kidney morphology and collagen deposition, fibrogenic gene and protein expression, and pharmacokinetic analyses.
Results
CVC significantly reduced monocyte/macrophage recruitment in vivo at doses ≥20 mg/kg/day (p < 0.05). At these doses, CVC showed antifibrotic effects, with significant reductions in collagen deposition (p < 0.05), and collagen type 1 protein and mRNA expression across the three animal models of fibrosis. In the NASH model, CVC significantly reduced the non-alcoholic fatty liver disease activity score (p < 0.05 vs. controls). CVC treatment had no notable effect on body or liver/kidney weight.
Conclusions
CVC displayed potent anti-inflammatory and antifibrotic activity in a range of animal fibrosis models, supporting human testing for fibrotic diseases. Further experimental studies are needed to clarify the underlying mechanisms of CVC’s antifibrotic effects. A Phase 2b study in adults with NASH and liver fibrosis is fully enrolled (CENTAUR Study 652-2-203; NCT02217475)
- …