16,599 research outputs found
Taste symmetry breaking with HYP-smeared staggered fermions
We study the impact of hypercubic (HYP) smearing on the size of taste
breaking for staggered fermions, comparing to unimproved and to asqtad-improved
staggered fermions. As in previous studies, we find a substantial reduction in
taste-breaking compared to unimproved staggered fermions (by a factor of 4-7 on
lattices with spacing fm). In addition, we observe that
discretization effects of next-to-leading order in the chiral expansion () are markedly reduced by HYP smearing. Compared to asqtad valence
fermions, we find that taste-breaking in the pion spectrum is reduced by a
factor of 2.5-3, down to a level comparable to the expected size of generic
effects. Our results suggest that, once one reaches a lattice
spacing of fm, taste-breaking will be small enough after HYP
smearing that one can use a modified power counting in which , simplify fitting to phenomenologically interesting quantities.Comment: 14 pages, 13 figures, references updated, minor change
Collective resonance modes of Josephson vortices in sandwiched stack of BiSrCaCuO intrinsic Josephson junctions
We observed splitting of the low-bias vortex-flow branch in a
dense-Josephson-vortex state into multiple sub-branches in current-voltage
characteristics of intrinsic Josephson junctions (IJJs) of
BiSrCaCuO single crystals in the long-junction limit.
Each sub-branch corresponds to a plasma mode in serially coupled Josephson
junctions. Splitting into low-bias linear sub-branches with a spread in the
slopes and the inter-sub-branch mode-switching character are in good
quantitative agreement with the prediction of the weak but finite
inter-junction capacitive-coupling model incorporated with the inductive
coupling. This suggests the importance of the role of the capacitive coupling
in accurately describing the vortex dynamics in serially stacked IJJs.Comment: 4 pages, 3 figures, 1 tabl
Extending the Real-Time Maude Semantics of Ptolemy to Hierarchical DE Models
This paper extends our Real-Time Maude formalization of the semantics of flat
Ptolemy II discrete-event (DE) models to hierarchical models, including modal
models. This is a challenging task that requires combining synchronous
fixed-point computations with hierarchical structure. The synthesis of a
Real-Time Maude verification model from a Ptolemy II DE model, and the formal
verification of the synthesized model in Real-Time Maude, have been integrated
into Ptolemy II, enabling a model-engineering process that combines the
convenience of Ptolemy II DE modeling and simulation with formal verification
in Real-Time Maude.Comment: In Proceedings RTRTS 2010, arXiv:1009.398
BRST symmetry of SU(2) Yang-Mills theory in Cho--Faddeev--Niemi decomposition
We determine the nilpotent BRST and anti-BRST transformations for the
Cho--Faddeev-Niemi variables for the SU(2) Yang-Mills theory based on the new
interpretation given in the previous paper of the Cho--Faddeev-Niemi
decomposition. This gives a firm ground for performing the BRST quantization of
the Yang--Mills theory written in terms of the Cho--Faddeev-Niemi variables. We
propose also a modified version of the new Maximal Abelian gauge which could
play an important role in the reduction to the original Yang-Mills theory.Comment: 11 pages, no figure; Introduction improved, 3 references adde
- …
