792 research outputs found

    Effect of Achyranthes bidentata

    Get PDF
    The present study investigated the antiobesity effect of Achyranthes bidentata Blume root water extract in a 3T3-L1 adipocyte differentiation model and rats fed with a high-fat diet. To investigate the effect of Achyranthes bidentata Blume on adipogenesis in vitro, differentiating 3T3-L1 cells in adipocyte-induction media were treated every two days with Achyranthes bidentata Blume at various concentrations (1 to 25ā€‰Ī¼g/mL) for eight days. We found that Achyranthes bidentata Blume root inhibited 3T3-L1 adipocyte differentiation without affecting cell viability, and Western blot analysis revealed that phospho-Akt expression was markedly decreased, whereas there was no significant change in perilipin expression. Furthermore, administration of Achyranthes bidentata Blume root (0.5ā€‰g/kg body weight for six weeks) to rats fed with a high-fat diet significantly reduced body weight gain without affecting food intake, and the level of triglyceride was significantly decreased when compared to those in rats fed with only a high-fat diet. These results suggest that Achyranthes bidentata Blume root water extract could have a beneficial effect on inhibition of adipogenesis and controlling body weight in rats fed with a high-fat diet

    KITENIN increases invasion and migration of mouse squamous cancer cells and promotes pulmonary metastasis in a mouse squamous tumor model

    Get PDF
    AbstractKAI1 C-terminal interacting tetraspanin (KITENIN) is reported to promote metastasis in mouse colon cancer models. We investigated the role of KITENIN on the progression of squamous cell carcinoma (SCC). In a preliminary clinical study using resected tissues from head and neck SCC patients, KITENIN was highly expressed in tumors and metastatic lymph nodes, while KAI1 was more increased in adjacent mucosa than in tumor. KITENIN-transfected mouse squamous cancer (SCC VII/KITENIN) cells showed significantly higher invasion, migration, and proliferation than empty vector-transfected cells. In syngeneic mouse squamous tumor models, more increased tumor volume and enhanced lung metastasis were found in SCC VII/KITENIN cells-injected mice. Thus, KITENIN increases invasion and migration of squamous cancer cells and thereby promotes distant metastasis in mouse squamous tumor models

    Embryoid body size-mediated differential endodermal and mesodermal differentiation using polyethylene glycol (PEG) microwell array

    Get PDF
    Embryoid bodies have a number of similarities with cells in gastrulation, which provides useful biological information about embryonic stem cell differentiation. Extensive research has been done to study the control of embryoid body-mediated embryonic stem cell differentiation in various research fields. Recently, microengineering technology has been used to control the size of embryoid bodies and to direct lineage specific differentiation of embryonic stem cells. However, the underlying biology of developmental events in the embryoid bodies of different sizes has not been well elucidated. In this study, embryoid bodies with different sizes were generated within microfabricated PEG microwell arrays, and a series of gene and molecular expressions related to early developmental events was investigated to further elucidate the size-mediated differentiation. The gene and molecular expression profile suggested preferential visceral endoderm formation in 450 Ī¼m embryoid bodies and preferential lateral plate mesoderm formation in 150 Ī¼m embryoid bodies. These aggregates resulted in higher cardiac differentiation in 450 Ī¼m embryoid bodies and higher endothelial differentiation in 150 Ī¼m embryoid bodies, respectively. Our findings may provide further insight for understanding embryoid body size-mediated developmental progress.National Science Foundation (U.S.) (CAREER Award DMR0847287)United States. Office of Naval Research (Naval Research Young National Investigator Award)National Institutes of Health (U.S.) (HL092836, EB02597, AR057837

    Spatio-Temporal Variability of Aerosol Optical Depth, Total Ozone and NO(2)Over East Asia: Strategy for the Validation to the GEMS Scientific Products

    Get PDF
    In this study, the spatio-temporal variability of aerosol optical depth (AOD), total column ozone (TCO), and total column NO2(TCN) was identified over East Asia using long-term datasets from ground-based and satellite observations. Based on the statistical results, optimized spatio-temporal ranges for the validation study were determined with respect to the target materials. To determine both spatial and temporal ranges for the validation study, we confirmed that the observed datasets can be statistically considered as the same quantity within the ranges. Based on the thresholds of R-2>0.95 (temporal) and R>0.95 (spatial), the basic ranges for spatial and temporal scales for AOD validation was within 30 km and 30 min, respectively. Furthermore, the spatial scales for AOD validation showed seasonal variation, which expanded the range to 40 km in summer and autumn. Because of the seasonal change of latitudinal gradient of the TCO, the seasonal variation of the north-south range is a considerable point. For the TCO validation, the north-south range is varied from 0.87 degrees in spring to 1.05 degrees in summer. The spatio-temporal range for TCN validation was 20 min (temporal) and 20-50 km (spatial). However, the nearest value of satellite data was used in the validation because the spatio-temporal variation of TCN is large in summer and autumn. Estimation of the spatio-temporal variability for respective pollutants may contribute to improving the validation of satellite products

    The efficacy of memory load on speech-based detection of Alzheimerā€™s disease

    Get PDF
    IntroductionThe study aims to test whether an increase in memory load could improve the efficacy in detection of Alzheimerā€™s disease and prediction of the Mini-Mental State Examination (MMSE) score.MethodsSpeech from 45 mild-to-moderate Alzheimerā€™s disease patients and 44 healthy older adults were collected using three speech tasks with varying memory loads. We investigated and compared speech characteristics of Alzheimerā€™s disease across speech tasks to examine the effect of memory load on speech characteristics. Finally, we built Alzheimerā€™s disease classification models and MMSE prediction models to assess the diagnostic value of speech tasks.ResultsThe speech characteristics of Alzheimerā€™s disease in pitch, loudness, and speech rate were observed and the high-memory-load task intensified such characteristics. The high-memory-load task outperformed in AD classification with an accuracy of 81.4% and MMSE prediction with a mean absolute error of 4.62.DiscussionThe high-memory-load recall task is an effective method for speech-based Alzheimerā€™s disease detection
    • ā€¦
    corecore