53 research outputs found

    Smooth Model Predictive Path Integral Control without Smoothing

    Full text link
    We present a sampling-based control approach that can generate smooth actions for general nonlinear systems without external smoothing algorithms. Model Predictive Path Integral (MPPI) control has been utilized in numerous robotic applications due to its appealing characteristics to solve non-convex optimization problems. However, the stochastic nature of sampling-based methods can cause significant chattering in the resulting commands. Chattering becomes more prominent in cases where the environment changes rapidly, possibly even causing the MPPI to diverge. To address this issue, we propose a method that seamlessly combines MPPI with an input-lifting strategy. In addition, we introduce a new action cost to smooth control sequence during trajectory rollouts while preserving the information theoretic interpretation of MPPI, which was derived from non-affine dynamics. We validate our method in two nonlinear control tasks with neural network dynamics: a pendulum swing-up task and a challenging autonomous driving task. The experimental results demonstrate that our method outperforms the MPPI baselines with additionally applied smoothing algorithms.Comment: Accepted to IEEE Robotics and Automation Letters (and IROS 2022). Our video can be found at https://youtu.be/ibIks6ExGw

    Differential Functions of mPer1, mPer2, and mPer3 in the SCN Circadian Clock

    Get PDF
    AbstractThe role of mPer1 and mPer2 in regulating circadian rhythms was assessed by disrupting these genes. Mice homozygous for the targeted allele of either mPer1 or mPer2 had severely disrupted locomotor activity rhythms during extended exposure to constant darkness. Clock gene RNA rhythms were blunted in the suprachiasmatic nucleus of mPer2 mutant mice, but not of mPER1-deficient mice. Peak mPER and mCRY1 protein levels were reduced in both lines. Behavioral rhythms of mPer1/mPer3 and mPer2/mPer3 double-mutant mice resembled rhythms of mice with disruption of mPer1 or mPer2 alone, respectively, confirming the placement of mPer3 outside the core circadian clockwork. In contrast, mPer1/mPer2 double-mutant mice were immediately arrhythmic. Thus, mPER1 influences rhythmicity primarily through interaction with other clock proteins, while mPER2 positively regulates rhythmic gene expression, and there is partial compensation between products of these two genes

    Pattern of distant recurrence according to the molecular subtypes in Korean women with breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Distant recurrence is one of the most important risk factors in overall survival, and distant recurrence is related to a complex biologic interaction of seed and soil factors. The aim of the study was to investigate the association between the molecular subtypes and patterns of distant recurrence in patients with breast cancer.</p> <p>Methods</p> <p>In an investigation of 313 women with breast cancer who underwent surgery from 1994 and 2000, the expressions of estrogen and progestrone receptor (ER/PR), and human epithelial receptor-2 (HER2) were evaluated. The subtypes were defined as luminal-A, luminal-HER2, HER2-enriched, and triple negative breast cancer (TNBC) according to ER, PR, and HER2 status.</p> <p>Results</p> <p>Bone was the most common site of distant recurrence. The incidence of first distant recurrence site was significantly different among the subtypes. Brain metastasis was more frequent in the luminal-HER2 and TNBC subtypes. In subgroup analysis, overall survival in patients with distant recurrence after 24 months after surgery was significantly different among the subtypes.</p> <p>Conclusions</p> <p>Organ-specific metastasis may depend on the molecular subtype of breast cancer. Tailored strategies against distant metastasis concerning the molecular subtypes in breast cancer may be considered.</p

    Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroinflammation is important in the pathogenesis and progression of Alzheimer disease (AD). Previously, we demonstrated that lipopolysaccharide (LPS)-induced neuroinflammation caused memory impairments. In the present study, we investigated the possible preventive effects of 4-<it>O</it>-methylhonokiol, a constituent of <it>Magnolia officinalis</it>, on memory deficiency caused by LPS, along with the underlying mechanisms.</p> <p>Methods</p> <p>We investigated whether 4-<it>O</it>-methylhonokiol (0.5 and 1 mg/kg in 0.05% ethanol) prevents memory dysfunction and amyloidogenesis on AD model mice by intraperitoneal LPS (250 Ī¼g/kg daily 7 times) injection. In addition, LPS-treated cultured astrocytes and microglial BV-2 cells were investigated for anti-neuroinflammatory and anti-amyloidogenic effect of 4-<it>O</it>-methylhonkiol (0.5, 1 and 2 Ī¼M).</p> <p>Results</p> <p>Oral administration of 4-<it>O</it>-methylhonokiol ameliorated LPS-induced memory impairment in a dose-dependent manner. In addition, 4-<it>O</it>-methylhonokiol prevented the LPS-induced expression of inflammatory proteins; inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as activation of astrocytes (expression of glial fibrillary acidic protein; GFAP) in the brain. In <it>in vitro </it>study, we also found that 4-<it>O</it>-methylhonokiol suppressed the expression of iNOS and COX-2 as well as the production of reactive oxygen species, nitric oxide, prostaglandin E<sub>2</sub>, tumor necrosis factor-Ī±, and interleukin-1Ī² in the LPS-stimulated cultured astrocytes. 4-<it>O</it>-methylhonokiol also inhibited transcriptional and DNA binding activity of NF-ĪŗB via inhibition of IĪŗB degradation as well as p50 and p65 translocation into nucleus of the brain and cultured astrocytes. Consistent with the inhibitory effect on neuroinflammation, 4-<it>O</it>-methylhonokiol inhibited LPS-induced AĪ²<sub>1-42 </sub>generation, Ī²- and Ī³-secretase activities, and expression of amyloid precursor protein (APP), BACE1 and C99 as well as activation of astrocytes and neuronal cell death in the brain, in cultured astrocytes and in microglial BV-2 cells.</p> <p>Conclusion</p> <p>These results suggest that 4-<it>O</it>-methylhonokiol inhibits LPS-induced amyloidogenesis via anti-inflammatory mechanisms. Thus, 4-<it>O</it>-methylhonokiol can be a useful agent against neuroinflammation-associated development or the progression of AD.</p

    Transient, light-induced rhythmicity in mPer-deficient mice

    No full text
    As another assay of light responsiveness, in the present study, mPer mutant mice were maintained in DD (constant darkness) until they became arrhythmic, and then they were exposed to a single 3-h light pulse by activating the lights to the housing compartment, followed by DD

    Transient, Light-Induced Rhythmicity in mPER-Deficient Mice

    No full text
    • ā€¦
    corecore