1,050 research outputs found

    Vortex-flow electromagnetic emission in stacked intrinsic Josephson junctions

    Full text link
    We confirmed the existence of the collective transverse plasma modes excited by the motion of the Josephson vortex lattice in stacked intrinsic Josephson junctions of Bi2_2Sr2_2CaCu2_2O8+x_{8+x} by observing the multiple subbranches in the Josephson-vortex-flow current-voltage characteristics. We also observed the symptom of the microwave emission from the resonance between the Josephson vortex lattice and the collective transverse plasma modes, which provides the possibility of developing Josephson-vortex-flow electromagnetic oscillators.Comment: 4 pages, 3 figure

    Collective Josephson vortex dynamics in a finite number of intrinsic Josephson junctions

    Full text link
    We report the experimental confirmation of the collective transverse plasma modes excited by the Josephson vortex lattice in stacks of intrinsic Josephson junctions in Bi2_{2}Sr2_{2}CaCu2_{2}O8+x_{8+x} single crystals. The excitation was confirmed by analyzing the temperature (TT) and magnetic field (HH) dependencies of the multiple sub-branches in the Josephson-vortex-flow region of the current-voltage characteristics of the system. In the near-static Josephson vortex state for a low tunneling bias current, pronounced magnetoresistance oscillations were observed, which represented a triangular-lattice vortex configuration along the c axis. In the dynamic vortex state in a sufficiently high magnetic field and for a high bias current, splitting of a single Josephson vortex-flow branch into multiple sub-branches was observed. Detailed examination of the sub-branches for varying HH field reveals that sub-branches represent the different modes of the Josephson-vortex lattice along the c axis, with varied configuration from a triangular to a rectangular lattices. These multiple sub-branches merge to a single curve at a characteristic temperature, above which no dynamical structural transitions of the Josephson vortex lattice is expected

    Heating-compensated constant-temperature tunneling measurements on stacks of Bi2_2Sr2_2CaCu2_2O8+x_{8+x} intrinsic junctions

    Full text link
    In highly anisotropic layered cuprates such as Bi2_2Sr2_2CaCu2_2O8+x_{8+x} tunneling measurements on a stack of intrinsic junctions in a high-bias range are often susceptible to self-heating. In this study we monitored the temperature variation of a stack ("sample stack") of intrinsic junctions by measuring the resistance change of a nearby stack ("thermometer stack") of intrinsic junctions, which was strongly thermal-coupled to the sample stack through a common Au electrode. We then adopted a proportional-integral-derivative scheme incorporated with a substrate-holder heater to compensate the temperature variation. This in-situ temperature monitoring and controlling technique allows one to get rid of spurious tunneling effects arising from the self-heating in a high bias range.Comment: 3 pages, 3 figure

    Josephson-vortex-flow terahertz emission in layered high-TcT_c superconducting single crystals

    Full text link
    We report on the successful terahertz emission (0.6āˆ¼\sim1 THz) that is continuous and tunable in its frequency and power, by driving Josephson vortices in resonance with the collective standing Josephson plasma modes excited in stacked Bi2_2Sr2_2CaCu2_2O8+x_{8+x} intrinsic Josephson junctions. Shapiro-step detection was employed to confirm the terahertz-wave emission. Our results provide a strong feasibility of developing long-sought solid-state terahertz-wave emission devices

    A Dynamic Information-Based Parking Guidance for Megacities considering Both Public and Private Parking

    Get PDF
    The constantly increasing number of cars in the megacities is causing severe parking problems. To resolve this problem, many cities adopt parking guidance system as a part of intelligent transportation system (ITS). However, the current parking guidance system stays in its infant stage since the obtainable information is limited. To enhance parking management in the megacity and to provide better parking guidance to drivers, this study introduces an intelligent parking guidance system and proposes a new methodology to operate it. The introduced system considers both public parking and private parking so that it is designed to maximize the use of spatial resources of the city. The proposed methodology is based on the dynamic information related parking in the city and suggests the best parking space to each driver. To do this, two kinds of utility functions which assess parking spaces are developed. Using the proposed methodology, different types of parking management policies are tested through the simulation. According to the experimental test, it is shown that the centrally managed parking guidance can give better results than individually preferred parking guidance. The simulation test proves that both a driver???s benefits and parking management of a city from various points of view can be improved by using the proposed methodology

    Collective resonance modes of Josephson vortices in sandwiched stack of Bi2_{2}Sr2_{2}CaCu2_{2}O8+x_{8+x} intrinsic Josephson junctions

    Full text link
    We observed splitting of the low-bias vortex-flow branch in a dense-Josephson-vortex state into multiple sub-branches in current-voltage characteristics of intrinsic Josephson junctions (IJJs) of Bi2_{2}Sr2_{2}CaCu2_{2}O8+x_{8+x} single crystals in the long-junction limit. Each sub-branch corresponds to a plasma mode in serially coupled Josephson junctions. Splitting into low-bias linear sub-branches with a spread in the slopes and the inter-sub-branch mode-switching character are in good quantitative agreement with the prediction of the weak but finite inter-junction capacitive-coupling model incorporated with the inductive coupling. This suggests the importance of the role of the capacitive coupling in accurately describing the vortex dynamics in serially stacked IJJs.Comment: 4 pages, 3 figures, 1 tabl
    • ā€¦
    corecore