1,291 research outputs found
Formulation and Pharmacokinetic Evaluation of Controlled-Release Oxybutynin Tablets in Dogs
Purpose: To develop and optimize controlled-release (CR) oxybutynin chloride matrix tablets.Methods: Oxybutynin CR tablets were prepared by embedding drug-containing granules into a hydrogel matrix of hydroxypropyl methylcellulose (HPMC). A coating layer was then applied with a mixture of HPMC, ethylcellulose, shellac, and HPMC phthalate. The effect of several formulation variables on in vitro drug release was studied; furthermore, the drug release kinetics of the optimized formulation was evaluated. The in vivo pharmacokinetics of the optimized formulation was compared with those of commercial immediate-release and CR tablets in dogs.Results: The core tablets exhibited extended release consisting of drug release from the embedded granules through the erodible hydrogel matrix. Release rate was controlled by the amounts of swellingcontrol agent and hydrogel used. The optimized formulation followed zero-order release up to 24 h after an initial lag time. Maximum plasma drug concentration for the optimized and commercial CR tablets was 5.90 ± 1.42 and 6.47 ± 3.73 ng/mL, respectively, while the area under the plasma concentration– time curve was 101.40 ± 51.41 and 112.68 ± 65.89 ng∙h/mL, respectively.Conclusion: The formulated oxybutynin CR tablets exhibit prolonged drug release, thus rendering it a potentially suitable once-daily oral formulation for improved patient compliance.Keywords: Oxybutynin, Matrix tablet, Hydrogel, Oral controlled-release, Zero-order release,Pharmacokinetic
Investigation of inter-slice magnetization transfer effects as a new method for MTR imaging of the human brain
We present a new method for magnetization transfer (MT) ratio imaging in the brain that requires no separate saturation pulse. Interslice MT effects that are inherent to multi-slice balanced steady-state free precession (bSSFP) imaging were controlled via an interslice delay time to generate MT-weighted (0 s delay) and reference images (5-8 s delay) for MT ratio (MTR) imaging of the brain. The effects of varying flip angle and phase encoding (PE) order were investigated experimentally in normal, healthy subjects. Values of up to ∼ 50% and ∼ 40% were observed for white and gray matter MTR. Centric PE showed larger MTR, higher SNR, and better contrast between white and gray matter than linear PE. Simulations of a two-pool model of MT agreed well with in vivo MTR values. Simulations were also used to investigate the effects of varying acquisition parameters, and the effects of varying flip angle, PE steps, and interslice delay are discussed. Lastly, we demonstrated reduced banding with a non-balanced SSFP-FID sequence and showed preliminary results of interslice MTR imaging of meningioma
Facile one-pot synthesis of dual-cation incorporated titanosilicate and its deposition to membrane surfaces for simultaneous removal of Cs⁺ and Sr²⁺
Selective removal of 137Cs and 90Sr from aqueous environments is essential for the volume reduction and ultimate safe storage of nuclear waste. This study introduces a facile one-pot hydrothermal synthesis of Dual-cation form of TitanoSilicate (DTS, M3HTi4O4(SiO4)3, M = Na+ and K+) for the effective and simultaneous removal of Cs+ and Sr2+. DTS showed enhanced adsorption capacities (469 mg/g for Cs+ and 179 mg/g for Sr2+) and the adsorption kinetics were extremely fast with around 98% and >99% removal achieved within 1 min from a dilute Cs+ and Sr2+ solution, respectively. Moreover, DTS indicated the superior selectivity for both Cs+ and Sr2+ due to the dual-cation incorporation in the structure. In groundwater, the distribution coefficients (Kd at V/m = 1000 mL/g) for DTS were high for both Cs+ (1 ppm, 2.9 × 105 mL/g) and Sr2+ (1 ppm, 1.0 × 105 mL/g), and even in seawater DTS maintained a Cs+ (1 ppm) Kd value as high as 4.9 × 104 mL/g. Remarkably, DTS is synthesized as a membrane with graphene oxide for continuous removal of the radionuclides, which is extremely beneficial to purifying a large volume of contaminated water
Adsorption-induced conversion of the carbon nanotube field effect transistor from ambipolar to unipolar behavior
We investigate ambipolar to unipolar transition by the effect of ambient air on the carbon nanotube field-effect transistor. A unipolar transport property of the double-walled nanotube field-effect transistor and its conversion from ambipolar behavior are observed. We suggest that adsorptions of oxygen molecules, whose lowest-unoccupied-molecular-orbital state is around the midgap of the carbon nanotube, could suppress the electron channel formation and, consequently, result in the unipolar transport behavior.open343
Inter-slice blood flow and magnetization transfer effects as a new simultaneous imaging strategy
The recent blood flow and magnetization transfer (MT) technique termed alternate ascending/ descending directional navigation (ALADDIN) achieves the contrast using interslice blood flow and MT effects with no separate preparation RF pulse, thereby potentially overcoming limitations of conventional methods. In this study, we examined the signal characteristics of ALADDIN as a simultaneous blood flow and MT imaging strategy, by comparing it with pseudo-continuous ASL (pCASL) and conventional MT asymmetry (MTA) methods, all of which had the same bSSFP readout. Bloch-equation simulations and experiments showed ALADDIN perfusion signals increased with flip angle, whereas MTA signals peaked at flip angle around 45°-60°. ALADDIN provided signals comparable to those of pCASL and conventional MTA methods emulating the first, second, and third prior slices of ALADDIN under the same scan conditions, suggesting ALADDIN signals to be superposition of signals from multiple labeling planes. The quantitative cerebral blood flow signals from a modified continuous ASL model overestimated the perfusion signals compared to those measured with a pulsed ASL method. Simultaneous mapping of blood flow, MTA, and MT ratio in the whole brain is feasible with ALADDIN within a clinically reasonable time, which can potentially help diagnosis of various diseases
A commensal symbiotic interrelationship for the growth of Symbiobacterium toebii with its partner bacterium, Geobacillus toebii
<p>Abstract</p> <p>Background</p> <p><it>Symbiobacterium toebii </it>is a commensal symbiotic thermophile that absolutely requires its partner bacterium <it>Geobacillus toebii </it>for growth. Despite development of an independent cultivation method using cell-free extracts, the growth of <it>Symbiobacterium </it>remains unknown due to our poor understanding of the symbiotic relationship with its partner bacterium. Here, we investigated the interrelationship between these two bacteria for growth of <it>S. toebii </it>using different cell-free extracts of <it>G. toebii</it>.</p> <p>Results</p> <p><it>Symbiobacterium toebii </it>growth-supporting factors were constitutively produced through almost all growth phases and under different oxygen tensions in <it>G. toebii</it>, indicating that the factor may be essential components for growth of <it>G. toebii </it>as well as <it>S. toebii</it>. The growing conditions of <it>G. toebii </it>under different oxygen tension dramatically affected to the initial growth of <it>S. toebii </it>and the retarded lag phase was completely shortened by reducing agent, L-cysteine indicating an evidence of commensal interaction of microaerobic and anaerobic bacterium <it>S. toebii </it>with a facultative aerobic bacterium <it>G. toebii</it>. In addition, the growth curve of <it>S. toebii </it>showed a dependency on the protein concentration of cell-free extracts of <it>G. toebii</it>, demonstrating that the <it>G. toebii</it>-derived factors have nutrient-like characters but not quorum-sensing characters.</p> <p>Conclusions</p> <p>Not only the consistent existence of the factor in <it>G. toebii </it>during all growth stages and under different oxygen tensions but also the concentration dependency of the factor for proliferation and optimal growth of <it>S. toebii</it>, suggests that an important biosynthetic machinery lacks in <it>S. toebii </it>during evolution. The commensal symbiotic bacterium, <it>S. toebii </it>uptakes certain ubiquitous and essential compound for its growth from environment or neighboring bacteria that shares the equivalent compounds. Moreover, <it>G. toebii </it>grown under aerobic condition shortened the lag phase of <it>S. toebii </it>under anaerobic and microaerobic conditions, suggests a possible commensal interaction that <it>G. toebii </it>scavengers ROS/RNS species and helps the initial growth of <it>S. toebii</it>.</p
Antimony-doped graphene nanoplatelets
Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalystsclose0
Anaphylaxis to husband's seminal plasma and treatment by local desensitization
Hypersensitivity to human seminal fluid is rare but can be life threatening. We report a case of IgE-mediated anaphylaxis to seminal plasma that was diagnosed by skin prick tests and successfully treated by local desensitization. A 32-year-old woman suffering from angioedema and hypotension after exposure to semen was treated with epinephrine upon admission. Skin prick tests and immunoblotting for IgE binding components showed that she was sensitized to her husband's seminal plasma. Local desensitization, which persisted for six months, was achieved by intravaginal administration of serial dilutions of her husband's seminal plasma
Prenatal hypoxia induces increased cardiac contractility on a background of decreased capillary density.
Background: Chronic hypoxia in utero (CHU) is one of the most common insults to fetal development and may be associated with poor cardiac recovery from ischaemia-reperfusion injury,yet the effects on normal cardiac mechanical performance are poorly understood.
Methods: Pregnant female wistar rats were exposed to hypoxia (12% oxygen, balance nitrogen)for days 10–20 of pregnancy. Pups were born into normal room air and weaned normally. At 10 weeks of age, hearts were excised under anaesthesia and underwent retrograde 'Langendorff' perfusion. Mechanical performance was measured at constant filling pressure (100 cm H2O) with intraventricular balloon. Left ventricular free wall was dissected away and capillary density estimated following alkaline phosphatase staining. Expression of SERCA2a and Nitric Oxide Synthases (NOS) proteins were estimated by immunoblotting.
Results: CHU significantly increased body mass (P < 0.001) compared with age-matched control rats but was without effect on relative cardiac mass. For incremental increases in left ventricular balloon volume, diastolic pressure was preserved. However, systolic pressure was significantly greater following CHU for balloon volume = 50 μl (P < 0.01) and up to 200 μl (P < 0.05). For higher balloon volumes systolic pressure was not significantly different from control. Developed pressures were correspondingly increased relative to controls for balloon volumes up to 250 μl (P < 0.05).Left ventricular free wall capillary density was significantly decreased in both epicardium (18%; P <0.05) and endocardium (11%; P < 0.05) despite preserved coronary flow. Western blot analysis revealed no change to the expression of SERCA2a or nNOS but immuno-detectable eNOS protein was significantly decreased (P < 0.001) in cardiac tissue following chronic hypoxia in utero.
Conclusion: These data offer potential mechanisms for poor recovery following ischaemia, including decreased coronary flow reserve and impaired angiogenesis with subsequent detrimental effects of post-natal cardiac performance
- …