332 research outputs found
Habitat Sampling and Habitat Selection by Female Wild Turkeys: Ecological Correlates and Reproductive Consequences
Habitat sampling can allow much more effective habitat selection for longterm activities such as nesting and may be directly linked to fitness. We studied the process of habitat sampling and selection in female Wild Turkeys (Meleagris gallopavo) in the Arkansas Ozarks. In particular, we tested the prediction that movements prior to selecting nesting habitat correlate with the quality of selected habitat. Our results supported the prediction that greater habitat sampling (as reflected by greater area covered prior to nesting) allows acquisition of better nesting habitat; greater movements were correlated with choice of better nesting sites with more cover that allow higher nest survival. Attributes of individual birds and habitat dispersion influenced movement patterns and access to quality habitats. In addition, extent of habitat sampling early in the season correlated with reproductive performance by affecting renesting. Distance between subsequent nest locations was inversely related to the movements early in the season and also depended upon length of incubation before nest predation. Females that sampled larger areas after depredation of their first nest and did so outside of their prenesting range were more successful than other females
Progressive, Transgenerational Changes in Offspring Phenotype and Epigenotype following Nutritional Transition
Induction of altered phenotypes during development in response to environmental input involves epigenetic changes. Phenotypic traits can be passed between generations by a variety of mechanisms, including direct transmission of epigenetic states or by induction of epigenetic marks de novo in each generation. To distinguish between these possibilities we measured epigenetic marks over four generations in rats exposed to a sustained environmental challenge. Dietary energy was increased by 25% at conception in F0 female rats and maintained at this level to generation F3. F0 dams showed higher pregnancy weight gain, but lower weight gain and food intake during lactation than F1 and F2 dams. On gestational day 8, fasting plasma glucose concentration was higher and Ξ²-hydroxybutyrate lower in F0 and F1 dams than F2 dams. This was accompanied by decreased phosphoenolpyruvate carboxykinase (PEPCK) and increased PPARΞ± and carnitine palmitoyl transferase-1 mRNA expression. PEPCK mRNA expression was inversely related to the methylation of specific CpG dinucleotides in its promoter. DNA methyltransferase (Dnmt) 3a2, but not Dnmt1 or Dnmt3b, expression increased and methylation of its promoter decreased from F1 to F3 generations. These data suggest that the regulation of energy metabolism during pregnancy and lactation within a generation is influenced by the maternal phenotype in the preceding generation and the environment during the current pregnancy. The transgenerational effects on phenotype were associated with altered DNA methylation of specific genes in a manner consistent with induction de novo of epigenetic marks in each generation
No evidence for selective follicle abortion underlying primary sex ratio adjustment in pigeons
Primary sex ratio adjustment in birds has been extensively studied, yet the underlying physiological mechanisms are far from understood. Avian females are the heterogametic sex (ZW), and the future sex of the offspring is determined at chromosome segregation during meiosis I, shortly before the oocyte is ovulated. Assuming that the mother can detect the sex of the developing oocyte before ovulation, it has been suggested that a follicle of the un-preferred sex could selectively be induced to become atretic and regress instead of being ovulated (selective follicle abortion). This potential mechanism has been proposed to underlie biased primary sex ratios in birds, including the homing pigeon (Columba livia domestica), which produces a modal clutch size of two eggs. However, without replacement by an additional, already mature follicle, abortion of a preovulatory follicle would most likely result in either reduced clutch sizes or laying gaps, since a not-yet-recruited follicle still needed to undergo the whole maturation phase. In the current study we killed female pigeons, which were adjusting embryo sex of first eggs according to change in body mass. We examined ovaries for signs of follicle abortion but did not find any supporting evidence. All females produced one or two mature follicles but only two out of the 56 experimental birds produced an additional third mature follicle. Therefore, our results do not corroborate the hypothesis that pigeon mothers manipulate primary offspring sex by selectively aborting follicles of the un-preferred sex
Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics
A continuous time model for multiagent systems governed by reinforcement
learning with scale-free memory is developed. The agents are assumed to act
independently of one another in optimizing their choice of possible actions via
trial-and-error search. To gain awareness about the action value the agents
accumulate in their memory the rewards obtained from taking a specific action
at each moment of time. The contribution of the rewards in the past to the
agent current perception of action value is described by an integral operator
with a power-law kernel. Finally a fractional differential equation governing
the system dynamics is obtained. The agents are considered to interact with one
another implicitly via the reward of one agent depending on the choice of the
other agents. The pairwise interaction model is adopted to describe this
effect. As a specific example of systems with non-transitive interactions, a
two agent and three agent systems of the rock-paper-scissors type are analyzed
in detail, including the stability analysis and numerical simulation.
Scale-free memory is demonstrated to cause complex dynamics of the systems at
hand. In particular, it is shown that there can be simultaneously two modes of
the system instability undergoing subcritical and supercritical bifurcation,
with the latter one exhibiting anomalous oscillations with the amplitude and
period growing with time. Besides, the instability onset via this supercritical
mode may be regarded as "altruism self-organization". For the three agent
system the instability dynamics is found to be rather irregular and can be
composed of alternate fragments of oscillations different in their properties.Comment: 17 pages, 7 figur
Entomological Surveillance of Behavioural Resilience and Resistance in Residual Malaria Vector Populations.
The most potent malaria vectors rely heavily upon human blood so they are vulnerable to attack with insecticide-treated nets (ITNs) and indoor residual spraying (IRS) within houses. Mosquito taxa that can avoid feeding or resting indoors, or by obtaining blood from animals, mediate a growing proportion of the dwindling transmission that persists as ITNs and IRS are scaled up. Increasing frequency of behavioural evasion traits within persisting residual vector systems usually reflect the successful suppression of the most potent and vulnerable vector taxa by IRS or ITNs, rather than their failure. Many of the commonly observed changes in mosquito behavioural patterns following intervention scale-up may well be explained by modified taxonomic composition and expression of phenotypically plastic behavioural preferences, rather than altered innate preferences of individuals or populations. Detailed review of the contemporary evidence base does not yet provide any clear-cut example of true behavioural resistance and is, therefore, consistent with the hypothesis presented. Caution should be exercised before over-interpreting most existing reports of increased frequency of behavioural traits which enable mosquitoes to evade fatal contact with insecticides: this may simply be the result of suppressing the most behaviourally vulnerable of the vector taxa that constituted the original transmission system. Mosquito taxa which have always exhibited such evasive traits may be more accurately described as behaviourally resilient, rather than resistant. Ongoing national or regional entomological monitoring surveys of physiological susceptibility to insecticides should be supplemented with biologically and epidemiologically meaningfully estimates of malaria vector population dynamics and the behavioural phenotypes that determine intervention impact, in order to design, select, evaluate and optimize the implementation of vector control measures
Hierarchy Theory of Evolution and the Extended Evolutionary Synthesis: Some Epistemic Bridges, Some Conceptual Rifts
Contemporary evolutionary biology comprises a plural landscape of multiple co-existent conceptual frameworks and strenuous voices that disagree on the nature and scope of evolutionary theory. Since the mid-eighties, some of these conceptual frameworks have denounced the ontologies of the Modern Synthesis and of the updated Standard Theory of Evolution as unfinished or even flawed. In this paper, we analyze and compare two of those conceptual frameworks, namely Niles Eldredgeβs Hierarchy Theory of Evolution (with its extended ontology of evolutionary entities) and the Extended Evolutionary Synthesis (with its proposal of an extended ontology of evolutionary processes), in an attempt to map some epistemic bridges (e.g. compatible views of causation; niche construction) and some conceptual rifts (e.g. extra-genetic inheritance; different perspectives on macroevolution; contrasting standpoints held in the βexternalismβinternalismβ debate) that exist between them. This paper seeks to encourage theoretical, philosophical and historiographical discussions about pluralism or the possible unification of contemporary evolutionary biology
Eliminating Malaria Vectors.
Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations
An adaptive annual rhythm in the sex of first pigeon eggs
When the reproductive value of male and female offspring varies differentially, parents are predicted to adjust the sex ratio of their offspring to maximize their fitness (Trivers and Willard, Science 179:90β92, 1973). Two factors have been repeatedly linked to skews in avian offspring sex ratio. First, laying date can affect offspring sex ratio when the sexes differ in age of first reproduction, such that the more slowly maturing sex is overproduced early in the season. Second, position of the egg in the laying sequence of a clutch may affect sex ratio bias since manipulating the sex of the first eggs may be least costly to the mother. We studied both factors in two non-domesticated pigeon species. Both the Wood pigeon (Columba palumbus) and the Rock pigeon (Columba livia) have long breeding seasons and lay two-egg clutches. In the field, we determined the sex of Wood pigeon nestlings. In Rock pigeons, housed in captivity outdoors, we determined embryo sex after 3Β days of incubation. On the basis of their sex-specific age of first reproduction, we predicted that males, maturing at older age than females, should be produced in majority early and females later in the year. This was confirmed for both species. The bias was restricted to first eggs. Rock pigeons produced clutches throughout the year and show that the sex of the first egg followed an annual cycle. To our knowledge, this study presents the first evidence of a full annual rhythm in adaptive sex allocation in birds. We suggest that this reflects an endogenous seasonal program in primary sex ratio controlled by a preovulatory mechanism
- β¦