2 research outputs found

    Smart Weather Data Management Based on Artificial Intelligence and Big Data Analytics for Precision Agriculture

    No full text
    Smart management of weather data is an essential step toward implementing sustainability and precision in agriculture. It represents an important input for numerous tasks, such as crop growth, development, yield, and irrigation scheduling, to name a few. Advances in technology allow collecting this weather data from heterogeneous sources with high temporal resolution and at low cost. Generating and using these data in their raw form makes no sense, and therefore implementing adequate infrastructure and tools is necessary. For that purpose, this paper presents a smart weather data management system evaluated using data from a meteorological station installed in our study area covering the period from 2013 to 2020 at a half-hourly scale. The proposed system makes use of state-of-the-art statistical methods, machine learning, and deep learning models to derive actionable insights from these raw data. The general architecture is made up of four layers: data acquisition, data storage, data processing, and application layers. The data sources include real-time sensors, IoT devices, reanalysis data, and raw files. The data are then checked for errors and missing values using a proposed method based on ERA5-Land reanalysis data and deep learning. The resulting coefficient of determination (R2) and Root Mean Squared Error (RMSE) for this method were 0.96 and 0.04, respectively, for the scaled air temperature estimate. The MongoDB NoSQL database is used for storage thanks to its ability to deal with real-world big data. The system offers various services such as (i) weather time series forecasts, (ii) visualization and analysis of meteorological data, and (iii) the use of machine learning to estimate the reference evapotranspiration (ET0) needed for efficient irrigation. To this, the platform uses the XGBoost model to achieve the precision of the Penman–Monteith method while using a limited number of meteorological variables (air temperature and global solar radiation). Results for this approach give R2 = 0.97 and RMSE = 0.07. This system represents the first incremental step toward implementing smart and sustainable agriculture in Morocco

    Hydraulic Modeling and Remote Sensing Monitoring of Floodhazard in Arid Environments—A Case Study of Laayoune City in Saquia El Hamra Watershed Southern Morocco

    No full text
    Morocco often faces significant intense rainfall periods that can generate flash floods and raging torrents, causing serious damage in a very short period of time. This study aims to monitor wetland areas after a flash-flood event in an arid region, Saquia El hamra Saharan of Morocco, using a technique that combines hydraulic modeling and remote sensing technology, namely satellite images. The hydrological parameters of the watershed were determined by the WMS software. Flood flow was modeled and simulated using HEC HMS and HEC-RAS software. To map the flooded areas, two satellite images (Sentinel-2 optical images) taken before and after the event were used. Three classifications were carried out using two powerful classifiers: support vector machines and decision tree. The first classifier was applied on both dates’ images, and the resulting maps were used as input for a constructed decision tree model as a post-classification change detection process
    corecore