25 research outputs found

    Modeling the potential energy field caused by mass density distribution with Eton approach

    No full text
    A new approach for modeling real world problems called the “Eton Approach” was presented in this paper. The "Eton approach" combines both the concept of the variable order derivative together with Atangana derivative with memory derivative. The Atangana derivative with memory is used to account for the memory and fractional derivative for its filter effect. The approach was used to describe the potential energy field that is caused by a given charge or mass density distribution.We solve the modified model numerically and present supporting numerical simulations

    Generalized groundwater plume with degradation and rate-limited sorption model with Mittag-Leffler law

    No full text
    The concept of differentiation with the generalized Mittag-Leffler law is used in this paper to construct the model of movement of groundwater pollution with degradation and limited sorption. The fractional differentiation used in the model is in Riemann-Liouville sense. The new model is solved analytically using the Green Laplace transform approach. A numerical scheme is used to obtain the numerical solution of the modified model. Keywords: Movement of groundwater pollution, Plume with degradation, Rate-limited sorption, Atangana-Baleanu derivative in Riemann-Liouville sens

    Analysis of the Keller–Segel Model with a Fractional Derivative without Singular Kernel

    No full text
    Using some investigations based on information theory, the model proposed by Keller and Segel was extended to the concept of fractional derivative using the derivative with fractional order without singular kernel recently proposed by Caputo and Fabrizio. We present in detail the existence of the coupled-solutions using the fixed-point theorem. A detailed analysis of the uniqueness of the coupled-solutions is also presented. Using an iterative approach, we derive special coupled-solutions of the modified system and we present some numerical simulations to see the effect of the fractional order

    Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel

    No full text
    We presented the model of resistance, inductance, capacitance circuit using a novel derivative with fractional order that was recently proposed by Caputo and Fabrizio. The derivative possesses more important characteristics that are very useful in modelling. In this article, we proposed a novel translation from ordinary equation to fractional differential equation. Using this novel translation, we modified the resistance, inductance, capacitance electricity model. We solved analytically the modified equation using the Laplace transform method. We presented numerical results for different values of the fractional order. We observed that this solution depends on the fractional order

    Remarks on a green functions approach to diffusion models with singular kernels in fading memories

    No full text
    Diffusion problems with singulars kernels in fading memories are very interesting physical problem that have attracted attention of many researchers. In this paper, we aim to provide exact solutions of these problems using the green function method with some integral transform operators. The singular kernel used in this paper is based upon the power law function, which is used to construct the well-known Riemann-Liouville derivative with fractional order

    A note on Cattaneo-Hristov model with non-singular fading memory

    No full text
    Using the new trend of fractional differentiation based on the concept of exponential decay law, the Cattaneo model of diffusion in elastic medium was extended by Hristov. This model displays more physical properties than the first version. However no solution of this new equation is suggested in the literature. Therefore, this paper is devoted to the analysis of numerical solution of the Cattaneo-Hristov model with non-singular fading memory

    On study of fractional order epidemic model of COVID-19 under non-singular Mittag–Leffler kernel

    No full text
    This paper investigates the analysis of the fraction mathematical model of the novel coronavirus (COVID-19), which is indeed a source of threat all over the globe. This paper deals with the transmission mechanism by some affected parameters in the problem. The said study is carried out by the consideration of a fractional-order epidemic model describing the dynamics of COVID-19 under a non-singular kernel type of derivative. The concerned model examine via non-singular fractional-order derivative known as Atangana-Baleanu derivative in Caputo sense (ABC). The problem analyzes for qualitative analysis and determines at least one solution by applying the approach of fixed point theory. The uniqueness of the solution is derived by the Banach contraction theorem. For iterative solution, the technique of iterative fractional-order Adams–Bashforth scheme is applied. Numerical simulation for the proposed scheme is performed at various fractional-order lying between 0, 1 and for integer-order 1. We also compare the compartmental quantities of the said model at two different effective contact rates of β. All the compartments show convergence and stability with growing time. The simulation of the iterative techniques is also compared with the Laplace Adomian decomposition method (LADM). Good comparative results for the whole density have been achieved by different fractional orders and obtain the stability faster at the low fractional orders while slowly at higher-order

    Numerical analysis for the Klein-Gordon equation with mass parameter

    No full text
    Abstract A numerical analysis of the well-known linear partial differential equation describing the relativistic wave is presented in this work. Three different operators of fractional differentiation with power law, exponential decay law and Mittag-Leffler law are employed to extend the Klein-Gordon equation with mass parameter to the concept of fractional differentiation. The three models are solved numerically. The stability and the convergence of the numerical schemes are investigated in detail

    New nonlinear model of population growth.

    No full text
    The model of population growth is revised in this paper. A new model is proposed based on the concept of fractional differentiation that uses the generalized Mittag-Leffler function as kernel of differentiation. The new model includes the choice of sexuality. The existence of unique solution is investigated and numerical solution is provided

    Analytical Solution of Space-Time Fractional Fokker-Planck Equation by Homotopy Perturbation Sumudu Transform Method

    Get PDF
    An efficient approach based on homotopy perturbation method by using Sumudu transform is proposed to solve some linear and nonlinear space-time fractional Fokker-Planck equations (FPEs) in closed form. The space and time fractional derivatives are considered in Caputo sense. The homotopy perturbation Sumudu transform method (HPSTM) is a combined form of Sumudu transform, homotopy perturbation method, and He’s polynomials. The nonlinear terms can be easily handled by the use of He’s polynomials. Some examples show that the HPSTM is an effective tool for solving many space time fractional partial differential equations
    corecore