168 research outputs found

    CD4 T Cells Treated with gp120 Acquire a CD45R0+/CD45RA+ Phenotype

    Get PDF
    HIV-infected patients exhibit quantitative and qualitative defects in CD4 T cells, including having increased numbers of CD4+CD45R0+/CD45RA+ T cells, although it remains unclear how these cells arise. Here we demonstrate that gp120 treatment of activated but not resting primary human CD4 T cells decreases number of cells with single positive CD45R0+/CD45RA- effector memory phenotype while proportionally increasing the subset of cells with double positive CD45R0+/CD45RA+ mixed phenotype. We found that double positive CD45R0+/CD45RA+CD4 T cells preferentially undergo apoptosis while single positive CD45R0+/CD45RA- and CD45R0-/CD45RA+ do not. Blocking gp120-CD4 interaction with sCD4 or inhibition Lck activity reverses gp120 induced increase in double positive CD45R0+/CD45RA+CD4 T cells and subsequently diminishes the apoptosis of double positive CD45R0+/CD45RA+ cells. Altogether these data indicate that gp120 ligation of the CD4 receptor increases the number of double positive CD45R0+/CD45RA+ CD4 T cells which subsequently undergo apoptosis in a CD4 dependent manner

    HIV Protease Cleavage of Procaspase 8 is Necessary for Death of HIV-Infected Cells

    Get PDF
    Numerous host and viral factors are capable of causing death of HIV infected cells, uninfected bystander cells, or both. We assessed the relevance of HIV protease in infected cell killing by mutating its obligate substrate for death, procaspase 8. VSV pseudotyped HIV infection of cells expressing WT caspase 8 resulted in apoptotic cell death and generation of the HIV protease specific cleavage product of procaspase 8, casp8p41. Conversely, both cell death and casp8p41 production were inhibited in cells expressing procaspase 8 engineered to be resistant to HIV protease cleavage. Lymph nodes from HIV-infected patients with ongoing viral replication also selectively expressed casp8p41, which colocalized with both infected and apoptotic cells. HIV protease cleavage of procaspase 8 appears to be a necessary event for infected cell killing, which is responsible for infected cell death within lymphoid tissues from HIV-infected patients

    TRAIL Dependent Fratricidal Killing of gp120 Primed Hepatocytes by HCV Core Expressing Hepatocytes

    Get PDF
    The mechanism by which HIV and HCV cooperatively accelerate hepatocyte damage is not clearly understood; however, each virus affects the TRAIL: TRAIL- receptor system. We, therefore, questioned whether the independent effects of HCV and HIV combine to synergistically result in TRAIL dependent hepatocyte killing. We describe that Huh7 hepatocytes treated with HIV gp120 results in both increase TRAIL-R2 expression and an acquired sensitivity to TRAIL mediated killing. Moreover HCV infection and HCV core expression alone in Huh7 cells upregulates TRAIL. Co-incubation of HIV gp120 primed hepatocytes with HCV core expressing hepatocytes results in the selective death of the HIV gp120 primed hepatocytes that is selectively blocked by TRAIL–R2-Fc fusion protein. Liver biopsies from HIV mono-infected patients have increased TRAIL-R2; biopsies from HCV infected patients have increased TRAIL, while co-infected liver biopsies have increased PARP cleavage within hepatocytes indicating enhanced apoptosis. These findings suggest a pathogenic model to understand why HIV/HCV co-infection accelerates liver injury

    Patients with Discordant Responses to Antiretroviral Therapy Have Impaired Killing of HIV-Infected T Cells

    Get PDF
    In medicine, understanding the pathophysiologic basis of exceptional circumstances has led to an enhanced understanding of biology. We have studied the circumstance of HIV-infected patients in whom antiretroviral therapy results in immunologic benefit, despite virologic failure. In such patients, two protease mutations, I54V and V82A, occur more frequently. Expressing HIV protease containing these mutations resulted in less cell death, caspase activation, and nuclear fragmentation than wild type (WT) HIV protease or HIV protease containing other mutations. The impaired induction of cell death was also associated with impaired cleavage of procaspase 8, a requisite event for HIV protease mediated cell death. Primary CD4 T cells expressing I54V or V82A protease underwent less cell death than with WT or other mutant proteases. Human T cells infected with HIV containing these mutations underwent less cell death and less Casp8p41 production than WT or HIV containing other protease mutations, despite similar degrees of viral replication. The reductions in cell death occurred both within infected cells, as well as in uninfected bystander cells. These data indicate that single point mutations within HIV protease which are selected in vivo can significantly impact the ability of HIV to kill CD4 T cells, while not impacting viral replication. Therefore, HIV protease regulates both HIV replication as well as HIV induced T cell depletion, the hallmark of HIV pathogenesis

    Analysis of HIV Protease Killing Through Caspase 8 Reveals a Novel Interaction Between Caspase 8 and Mitochondria

    Get PDF
    Human Immunodeficiency Virus (HIV) protease initiates apoptosis of HIV-infected cells by proteolytic cleavage of procaspase 8, creating a novel peptide termed casp8p41. Expression of casp8p41 alone is sufficient to initiate caspase-dependent cell death associated with mitochondrial depolarization. Since casp8p41 does not contain the catalytic cysteine at position 360, the mechanism by which casp8p41 initiates apoptosis is unclear. We demonstrate that casp8p41 directly causes mitochondrial depolarization and release of cytochrome c with downstream caspase 9 activation. Moreover, death induced by casp8p41 requires the presence of mitochondria, and in intact cells, casp8p41 colocalizes with mitochondria. These results illuminate a novel mechanism of cell death induced by a caspase 8 cleavage fragment whereby mitochondrial interaction leads to depolarization and cytochrome c release

    HIV gp120 Induces, NF-ΞΊB Dependent, HIV Replication that Requires Procaspase 8

    Get PDF
    HIV envelope glycoprotein gp120 causes cellular activation resulting in anergy, apoptosis, proinflammatory cytokine production, and through an unknown mechanism, enhanced HIV replication.We describe that the signals which promote apoptosis are also responsible for the enhanced HIV replication. Specifically, we demonstrate that the caspase 8 cleavage fragment Caspase8p43, activates p50/p65 Nuclear Factor kappaB (NF-kappaB), in a manner which is inhibited by dominant negative IkappaBalpha. This caspase 8 dependent NF-kappaB activation occurs following stimulation with gp120, TNF, or CD3/CD28 crosslinking, but these treatments do not activate NF-kappaB in cells deficient in caspase 8. The Casp8p43 cleavage fragment also transactivates the HIV LTR through NF-kappaB, and the absence of caspase 8 following HIV infection greatly inhibits HIV replication.Gp120 induced caspase 8 dependent NF-kappaB activation is a novel pathway of HIV replication which increases understanding of the biology of T-cell death, as well as having implications for understanding treatment and prevention of HIV infection
    • …
    corecore